首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   26篇
  445篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   15篇
  2014年   20篇
  2013年   17篇
  2012年   39篇
  2011年   39篇
  2010年   18篇
  2009年   18篇
  2008年   30篇
  2007年   23篇
  2006年   38篇
  2005年   24篇
  2004年   17篇
  2003年   14篇
  2002年   20篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   8篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有445条查询结果,搜索用时 15 毫秒
341.
Serotonin or 5-hydroxytryptamine (5-HT) influences numerous functions in the gastrointestinal tract. We previously demonstrated that 5-HT treatment of Caco-2 cells inhibited Na(+)/H(+) exchangers (NHE) and Cl(-)/OH(-) exchange activities via distinct signaling mechanisms. Since regulation of several ion transporters such as NHE3 is influenced by intact cytoskeleton, we hypothesized that 5-HT modifies actin cytoskeleton and/or brush-border membrane architecture via involvement of signaling pathways. Ultrastructural analysis showed that 5-HT (0.1 muM, 1 h) treatment of Caco-2 cells caused the apical membrane to assume a convex dome shape that was associated with shortening of microvilli. To examine whether these cellular architecture changes are cytoskeleton driven, we analyzed actin cytoskeleton by fluorescence microscopy. 5-HT induced basal stress fibers with prominent cortical actin filaments via 5-HT3 and 5-HT4 receptor subtypes. This induction was partially attenuated by chelation of intracellular Ca(2+) and PKCalpha inhibition (Go6976). In vitro assays revealed that PKCalpha interacted with actin and this association was increased by 5-HT. Our data provide novel evidence that 5-HT-induced signaling via 5-HT3/4 receptor subtypes to cause Ca(2+) and PKCalpha-dependent regulation of actin cytoskeleton may play an important role in modulation of ion transporters that contribute to pathophysiology of diarrheal conditions associated with elevated levels of 5-HT.  相似文献   
342.
343.
The sulfated polysaccharide carrageenan (CGN) induces activation of NFkappaB and interleukin 8 (IL-8) in human colonic epithelial cells through a pathway of innate immunity mediated by Bcl10 (B-cell CLL/lymphoma 10). In this report, we identify Toll-like receptor 4 (TLR4), a member of the family of innate immune receptors, as the surface membrane receptor for CGN in human colonic epithelial cells. Experiments with fluorescence-tagged CGN demonstrated a marked reduction in binding of CGN to human intestinal epithelial cells and to RAW 264.7 mouse macrophages, following exposure to TLR4 blocking antibody (HTA-125). Binding of CGN to 10ScNCr/23 mouse macrophages, which are deficient in the genetic locus for TLR4, was absent. Additional experiments with TLR4 blocking antibody and TLR4 small interfering RNAs showed 80% reductions in CGN-induced increases in Bcl10 and IL-8. Transfection with dominant-negative MyD88 plasmid demonstrated MyD88 dependence of the CGN-TLR4-triggered increases in Bcl10 and IL-8. Therefore, these results indicate that CGN-induced inflammation in human colonocytes proceeds through a pathway of innate immunity, perhaps related to the unusual alpha-1,3-galactosidic linkage characteristic of CGN, and suggest how dietary CGN intake may contribute to human intestinal inflammation. Because CGN is a commonly used food additive in the Western diet, clarification of its effects and mechanisms of action are vital to issues of food safety.  相似文献   
344.
Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.  相似文献   
345.
Cadmium (Cd) is a non-redox toxic heavy metal present in the environment and induces oxidative stress in plants. We investigated whether exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP) has any ameliorating action against Cd-induced oxidative damage in plant roots and thus protective role against Cd toxicity. Cd treatment (50 or 250 μM) alone or in combination with 200 μM SNP was given to hydroponically grown wheat roots for a short time period of 24 h and then these were shifted to distilled water to observe changes in levels of oxidative markers (lipid peroxidation, H2O2 content and electrolyte leakage). Supplementation of Cd with SNP significantly reduced the Cd-induced lipid peroxidation, H2O2 content and electrolyte leakage in wheat roots. It indicated a reactive oxygen species (ROS) scavenging activity of NO. However, even upon removal of Cd-treatment solution, the levels of oxidative markers increased during 24 h recovery stage and later at 48 h these decreased. Cd treatment resulted in an upregulation of activities of antioxidant enzymes—superoxide dismutase (SOD, 1.15.1.1), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6), and glutathione reductase (GR, 1.6.4.2). SNP supply resulted in a reduction in Cd-induced increased activities of scavenging enzymes. The protective role of exogenous NO in decreasing Cd-induced oxidative damage was also evident from the histochemical localization of lipid peroxidation, plasma membrane integrity and superoxides. The study concludes that an exogenous supply of NO protects wheat roots from Cd-induced toxicity.  相似文献   
346.
Peroxysome proliferator activated receptor coactivator-1 gene (PPARGC1A) is a positional and functional candidate gene for milk fat yield. It has key role in energy, fat and glucose metabolism. Single nucleotide polymorphisms (SNPs) in Exon-8 of PPARGC1A are reported to be associated with milk fat yield in dairy cattle. In the present investigation PPARGC1A was partially amplified (around 767bp) by designing gene specific primer and confirm by sequencing the amplicon and its comparison with the PPARGC1A gene of bovine. Comparative study of PPARGC1A among different breeds of buffaloes reveals different level of mutations with respect to its gene sequence 0.013-1.69% and protein sequence 0.42% to 2.99%, Similarly the protein structures modeled from their sequences were compared by structural superposition that shows variations (RMSD) from 0.736 to 1.507. Furthermore, the sequences were used to generate a dendrogram. It reveals that Murrah and reference are very close to each other, similarly Toda, Bhadawari and Surti are closely related, whereas Pandharpuri is separated from both the cluster. Especially the variations are more at the binding site of this protein that may be the cause that different breeds have different percentage of milk fat. Further study is underway to detect polymorphism and associate them with milk fat related traits in buffalo.  相似文献   
347.
G protein-coupled receptors (GPCRs) are dynamic membrane proteins that bind extracellular molecules to transduce signals. Although GPCRs represent the largest class of therapeutic targets, only a small percentage of their ligand-binding sites are precisely defined. Here we describe the novel application of targeted photo-cross-linking using unnatural amino acids to obtain structural information about the allosteric binding site of a small molecule drug, the CCR5-targeted HIV-1 co-receptor blocker maraviroc.  相似文献   
348.
We previously reported the presence of vascular endothelial growth factor (VEGF) in testicular cells, and high concentrations of VEGF have been measured in semen, although its role in male reproduction remains obscure. In the present study we focus on understanding the mechanism of VEGF production by mouse Leydig cells cultured in vitro. Production of VEGF protein in medium by testicular cells was markedly increased by the addition of hCG in a time- and dose-dependent manner. Gonadotropin-stimulated VEGF production was mediated by cAMP-dependent protein kinase A (PKA), as evidenced by the effect of hCG being mimicked by 8Br-cAMP and being abolished in the presence of a PKA-specific inhibitor, H-89. Protein kinase C was not involved, as evidenced by phorbol 12-myristate 13-acetate having no influence on VEGF production by Leydig cells. In addition to hCG, atrial natriuretic peptide was also able to stimulate VEGF production, suggesting that cGMP is able to cross-activate PKA. A specific Src kinase inhibitor, PP2, could completely block the stimulatory effects of both gonadotropin and 8Br-cAMP on VEGF production by Leydig cells, implying an involvement of the Src kinase pathway. Furthermore, addition of U0126, an inhibitor of MEK 1/2, abolished the increase in VEGF production stimulated by both hCG and 8Br-cAMP. A similar inhibitory effect was observed by the addition of SB203580, a p38 mitogen-activated protein kinase inhibitor. Thus, in conclusion, Leydig cells are able to produce VEGF by a process under gonadotropic control, and PKA plays a key role in this process. Downstream of PKA, it appears that both MEK 1/2 and Src kinase-dependent pathways are involved, although further research will be necessary to determine the precise link between PKA and other kinases involved.  相似文献   
349.
Human granulocyte-macrophage colony stimulating factor (GM-CSF), a cytokine with many applications in clinical medicine, was produced specifically in the seeds of transgenic tobacco plants. Two rice endosperm-specific glutelin promoters of different size and sequence, Gt1 and Gt3, were used to direct expression. Also in the Gt3 construct, the GM-CSF coding region was in fusion with the first 24 nucleotides of the mature rice glutelin sequence at its 5' end. With the Gt1 construct plants, seed extracts contained the recombinant human GM-CSF protein up to a level of 0.03% of total soluble protein. Transgenic seed extracts actively stimulated the growth of human TF-1 cells suggesting that the seed-produced GM-CSF alone and in fusion with the rice glutelin peptide was stable and biologically active. Furthermore, native tobacco seed extracts inhibited the activity of E. coli-derived GM-CSF in this cytokine-dependent cell line. The seeds of F1 generation plants retained the biological activity of human GM-CSF protein indicating that the human coding sequence was stably inherited. The feasibility of oral delivery of such stable seed-produced cytokines is discussed.  相似文献   
350.
In Xenopus laevis development, β-catenin plays an important role in the Wnt-signaling pathway by establishing the Nieuwkoop center, which in turn leads to specification of the dorsoventral axis. Cadherins are essential for embryonic morphogenesis since they mediate calcium-dependent cell–cell adhesion and can modulate β-catenin signaling. α-catenin links β-catenin to the actin-based cytoskeleton. To study the role of endogenous α-catenin in early development, we have made deletion mutants of αN-catenin. The binding domain of β-catenin has been mapped to the NH2-terminal 210 amino acids of αN-catenin. Overexpression of mutants lacking the COOH-terminal 230 amino acids causes severe developmental defects that reflect impaired calcium-dependent blastomere adhesion. Lack of normal adhesive interactions results in a loss of the blastocoel in early embryos and ripping of the ectodermal layer during gastrulation. The phenotypes of the dominant-negative mutants can be rescued by coexpressing full-length αN-catenin or a mutant of β-catenin that lacks the internal armadillo repeats.

We next show that coexpression of αN-catenin antagonizes the dorsalizing effects of β-catenin and Xwnt-8. This can be seen phenotypically, or by studying the effects of expression on the downstream homeobox gene Siamois. Thus, α-catenin is essential for proper morphogenesis of the embryo and may act as a regulator of the intracellular β-catenin signaling pathway in vivo.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号