首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   49篇
  514篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   13篇
  2015年   11篇
  2014年   17篇
  2013年   14篇
  2012年   26篇
  2011年   24篇
  2010年   22篇
  2009年   19篇
  2008年   40篇
  2007年   21篇
  2006年   32篇
  2005年   21篇
  2004年   23篇
  2003年   24篇
  2002年   27篇
  2001年   6篇
  2000年   10篇
  1999年   12篇
  1998年   4篇
  1997年   4篇
  1996年   8篇
  1995年   7篇
  1993年   8篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1979年   2篇
  1978年   7篇
  1976年   5篇
  1975年   2篇
  1971年   3篇
  1968年   1篇
  1963年   1篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
451.
CD81-dependent binding of hepatitis C virus E1E2 heterodimers   总被引:1,自引:0,他引:1       下载免费PDF全文
Hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide. HCV is also the major cause of mixed cryoglobulinemia, a B-lymphocyte proliferative disorder. Direct experimentation with native viral proteins is not feasible. Truncated versions of recombinant E2 envelope proteins, used as surrogates for viral particles, were shown to bind specifically to human CD81. However, truncated E2 may not fully mimic the surface of HCV virions because the virus encodes two envelope glycoproteins that associate with each other as E1E2 heterodimers. Here we show that E1E2 complexes efficiently bind to CD81 whereas truncated E2 is a weak binder, suggesting that truncated E2 is probably not the best tool with which to study cellular interactions. To gain better insight into virus-cell interactions, we developed a method by which to isolate E1E2 complexes that are properly folded. We demonstrate that purified E1E2 heterodimers bind to cells in a CD81-dependent manner. Furthermore, engagement of B cells by purified E1E2 heterodimers results in their aggregation and in protein tyrosine phosphorylation, a hallmark of B-cell activation. These studies provide a possible clue to the etiology of HCV-associated B-cell lymphoproliferative diseases. They also delineate a method by which to isolate biologically functional E1E2 complexes for the study of virus-host cell interaction in other cell types.  相似文献   
452.
The insulin-like growth factor system (IGF) has been linked to the process of bone acquisition through epidemiologic analyses of large cohorts and in vitro studies of bone cells. But the exact relationship between expression of IGF-I in bone and skeletal homeostasis or pathologic conditions, such as osteoporosis, remains poorly defined. Recent advances in genomic engineering have resulted in the development of better in vivo models to test the role of IGF-I during development and maintenance of the adult skeleton. It is now established that skeletal expression of IGF-I is critical for differentiative bone cell function. It may also be essential for the full anabolic effects of parathyroid hormone on trabecular bone and for some component of biomineralization. Evidence from conditional mutagenesis studies suggests that serum IGF-I may represent more than a storage depot or permissive factor during the final phase of skeletal acquisition. This work re-examines the original tenets of the "somatomedin hypothesis" in light of these newer mouse models and their remarkable skeletal phenotypes. The implications are far reaching and suggest that newer approaches for manipulating the IGF regulatory system may one day be useful as therapeutic adjuncts for the treatment of osteoporosis.  相似文献   
453.
454.
The dinoflagellate Gymnodinium sp., which preys specifically on cells of the red microalga Porphyridium sp., possesses enzymes that degrade exocellular polysaccharides of the Porphyridium sp. A crude extract of Gymnodinium sp. was applied to this polysaccharide, and the degradation products were characterized by charge and size separations. Charge separation revealed the presence of a fraction that was not found in the native polysaccharide. This fraction, which was eluted from an anion-exchange resin with water alone, was composed mostly of glucose and xylose (in a 1:1 weight ratio). Size separation of the degradation products revealed three fractions; the molecular weight of the main one was 5 × 106 daltons, whereas that of the native polysaccharide was 7 × 106 daltons. The carbohydrate composition of these fractions was determined. Although the main product of degradation had a relatively high molecular weight, its viscosity was significantly reduced relative to the native polysaccharide. Additional enzymatic degradation is required for further exploration of the structure of the exocellular polymer of Porphyridium sp.  相似文献   
455.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the "heterogeneous ligand" model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   
456.
Increasingly complex schemes for representing solvent effects in an implicit fashion are being used in computational analyses of biological macromolecules. These schemes speed up the calculations by orders of magnitude and are assumed to compromise little on essential features of the solvation phenomenon. In this work we examine this assumption. Five implicit solvation models, a surface area-based empirical model, two models that approximate the generalized Born treatment and a finite difference Poisson-Boltzmann method are challenged in situations differing from those where these models were calibrated. These situations are encountered in automatic protein design procedures, whose job is to select sequences, which stabilize a given protein 3D structure, from a large number of alternatives. To this end we evaluate the energetic cost of burying amino acids in thousands of environments with different solvent exposures belonging, respectively, to decoys built with random sequences and to native protein crystal structures. In addition we perform actual sequence design calculations. Except for the crudest surface area-based procedure, all the tested models tend to favor the burial of polar amino acids in the protein interior over nonpolar ones, a behavior that leads to poor performance in protein design calculations. We show, on the other hand, that three of the examined models are nonetheless capable of discriminating between the native fold and many nonnative alternatives, a test commonly used to validate force fields. It is concluded that protein design is a particularly challenging test for implicit solvation models because it requires accurate estimates of the solvation contribution of individual residues. This contrasts with native recognition, which depends less on solvation and more on other nonbonded contributions.  相似文献   
457.
458.
Given the increasing interest in protein-protein interactions, the prediction of these interactions from sequence and structural information has become a booming activity. CAPRI, the community-wide experiment for assessing blind predictions of protein-protein interactions, is playing an important role in fostering progress in docking procedures. At the same time, novel methods are being derived for predicting regions of a protein that are likely to interact and for characterizing putative intermolecular contacts from sequence and structural data. Together with docking procedures, these methods provide an integrated computational approach that should be a valuable complement to genome-scale experimental studies of protein-protein interactions.  相似文献   
459.
Protein modification by ubiquitin has emerged as an important cellular regulatory mechanism. Recent studies illustrate the surprising ways in which polyubiquitin chains are manipulated in the regulation of NF-kappaB signaling.  相似文献   
460.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase. Importantly, increased amounts of polyubiquitinated HMGR and HMGal were observed upon treating cells with sterols or MVA. Cycloheximide inhibited the sterol-stimulated degradation of HMGR concomitantly with a marked reduction in polyubiquitination of the enzyme. Inhibition of squalene synthase with zaragozic acid blocked the MVA- but not sterol-stimulated ubiquitination and degradation of HMGR. Thus, similar to yeast, the ubiquitin-proteasome pathway is involved in the metabolically regulated turnover of mammalian HMGR. Yet, the data indicate divergence between yeast and mammals and suggest distinct roles for sterol and nonsterol metabolic signals in the regulated ubiquitination and degradation of mammalian HMGR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号