首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   94篇
  2021年   6篇
  2019年   4篇
  2018年   3篇
  2016年   7篇
  2015年   15篇
  2014年   17篇
  2013年   16篇
  2012年   17篇
  2011年   24篇
  2010年   8篇
  2009年   6篇
  2008年   18篇
  2007年   20篇
  2006年   15篇
  2005年   19篇
  2004年   16篇
  2003年   12篇
  2002年   15篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1994年   3篇
  1992年   6篇
  1991年   15篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   3篇
  1976年   5篇
  1975年   6篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   4篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
排序方式: 共有412条查询结果,搜索用时 390 毫秒
111.
Formation of tubular structures from an epithelial tissue is a process common to many morphogenetic events during organogenesis. We report here new data concerning the expression pattern of the vHNF1/HNF1beta gene during this process in the mouse. vHNF1 (variant Hepatocyte Nuclear Factor 1) is a member of the HNF1 homeoprotein family. Its expression domain includes organs such as the liver, the kidney, the lung and the pancreas, but is restricted to the epithelial cells of these organs. To follow vHNF1 expression during organogenesis, we have introduced a NLS-lacZ gene under the control of vHNF1 regulatory regions by homologous recombination. Detection of the beta-galactosidase activity in heterozygous mice demonstrates that this gene is expressed in numerous tubular epitheliums as soon as they appear and all along development.  相似文献   
112.
Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations   总被引:4,自引:0,他引:4  
Hepatocyte nuclear factor 1alpha (HNF1alpha) is an atypical dimeric homeodomain-containing protein that is expressed in liver, intestine, stomach, kidney, and pancreas. Mutations in the HNF1alpha gene are associated with an autosomal dominant form of non-insulin-dependent diabetes mellitus called maturity-onset diabetes of the young (MODY3). More than 80 different mutations have been identified so far, many of which involve highly conserved amino acid residues among vertebrate HNF1alpha. In the present work, we investigated the molecular mechanisms by which MODY3 mutations could affect HNF1alpha function. For this purpose, we analyzed the properties of 10 mutants resulting in amino acid substitutions or protein truncation. Some mutants have a reduced protein stability, whereas others are either defective in the DNA binding or impaired in their intrinsic trans-activation potential. Three mutants, characterized by a complete loss of trans-activation, behave as dominant negatives when transfected with the wild-type protein. These data define a clear causative relationship between MODY3 mutations and functional defects in HNF1alpha trans-activation. In addition, our analysis sheds new light on the structure of a homeoprotein playing a key role in pancreatic beta cell function.  相似文献   
113.
114.
115.
We report here an unexpected difference in the solubilities of D- and L-tyrosine in water, which could be discerned by their rate of crystallization and the resulting concentrations of their saturated solutions. A supersaturated solution of 10 mM L-tyrosine at 20 degrees C crystallized much more slowly than that of D-tyrosine under the same conditions, and the saturated solution of L-tyrosine was more concentrated than that of D-tyrosine. Supersaturated solutions of 10 mM DL-tyrosine in water formed precipitates of predominantly D-tyrosine and DL-tyrosine, resulting in an excess of L-tyrosine in the saturated solution. The experimental setups were monitored independently by UV-absorption, radioactivity tracing, optical rotation and X-ray diffraction. The process of nucleation and crystallization of D- and L-tyrosine is characterized by an exceptionally high cooperativity. It is possible that minute energy differences between D- and L-tyrosine, originating from parity violation or other non-conservative chiral discriminatory rules, could account for the observations. The physical process that initiated chiral selection in biological systems remains a challenging problem in understanding the origin of life, and it is possible that chiral compounds were concentrated from supersaturated racemic mixtures by preferential crystallization.  相似文献   
116.
Pure wheat germ RNA polymerase II but not calf thymus RNA polymerase II forms relatively stable binary complexes (half life time of 30 minutes at 0°C) with superhelical SV 40 DNA. On the contrary, the addition of a specific dinucleotide and a single ribotriphosphate permits the formation of highly stable complexes between both enzymes and SV 40 DNA. The elongation of RNA chains with preinitiated wheat germ enzyme only is stimulated by sarkosyl. These observations suggest that the wheat germ enzyme, as compared to that isolated from calf thymus, may contain a protein factor, a more native structure or both that permit efficient initiation and elongation of RNA chains on double stranded DNA.  相似文献   
117.
118.
119.
Cysteinyl leukotrienes (CysLTs) exert potent proinflammatory actions and contribute to many of the symptoms of asthma. Using a model of allergic sensitization and airway challenge with Aspergillus fumigatus (Af), we have found that Th2-type inflammation and airway hyperresponsiveness (AHR) to methacholine (MCh) were associated with increased LTD(4) responsiveness in mice. To explore the importance of increased CysLT signaling in airway smooth muscle function, we generated transgenic mice that overexpress the human CysLT1 receptor (hCysLT(1)R) via the alpha-actin promoter. These receptors were expressed abundantly and induced intracellular calcium mobilization in airway smooth muscle cells from transgenic mice. Force generation in tracheal ring preparations ex vivo and airway reactivity in vivo in response to LTD(4) were greatly amplified in hCysLT(1)R-overexpressing mice, indicating that the enhanced signaling induces coordinated functional changes of the intact airway smooth muscle. The increase of AHR imposed by overexpression of the hCysLT(1)R was greater in transgenic BALB/c mice than in transgenic B6 x SJL mice. In addition, sensitization- and challenge-induced increases in airway responsiveness were significantly greater in transgenic mice than that of nontransgenic mice compared with their respective nonsensitized controls. The amplified AHR in sensitized transgenic mice was not due to an enhanced airway inflammation and was not associated with similar enhancement in MCh responsiveness. These results indicate that a selective hCysLT(1)R-induced contractile mechanism synergizes with allergic AHR. We speculate that hCysLT(1)R signaling contributes to a hypercontractile state of the airway smooth muscle.  相似文献   
120.
Mdc1/NFBD1 controls cellular responses to DNA damage, in part via interacting with the Mre11-Rad50-Nbs1 complex that is involved in the recognition, signalling, and repair of DNA double-strand breaks (DSBs). Here, we show that in live human cells, the transient interaction of Nbs1 with DSBs and its phosphorylation by ATM are Mdc1-independent. However, ablation of Mdc1 by siRNA or mutation of the Nbs1's FHA domain required for Mdc1 binding reduced the affinity of Nbs1 for DSB-flanking chromatin and caused aberrant pan-nuclear dispersal of Nbs1. This occurred despite normal phosphorylation of H2AX, indicating that lack of Mdc1 does not impair this DSB-induced chromatin change, but rather precludes the sustained engagement of Nbs1 with these regions. Mdc1 (but not Nbs1) became partially immobilized to chromatin after DSB generation, and siRNA-mediated depletion of H2AX prevented such relocalization of Mdc1 and uncoupled Nbs1 from DSB-flanking chromatin. Our data suggest that Mdc1 functions as an H2AX-dependent interaction platform enabling a switch from transient, Mdc1-independent recruitment of Nbs1 to DSBs towards sustained, Mdc1-dependent interactions with the surrounding chromosomal microenvironment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号