首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1123篇
  免费   79篇
  1202篇
  2023年   8篇
  2022年   12篇
  2021年   28篇
  2020年   15篇
  2019年   20篇
  2018年   31篇
  2017年   17篇
  2016年   23篇
  2015年   61篇
  2014年   79篇
  2013年   61篇
  2012年   95篇
  2011年   84篇
  2010年   52篇
  2009年   49篇
  2008年   57篇
  2007年   66篇
  2006年   72篇
  2005年   54篇
  2004年   55篇
  2003年   47篇
  2002年   40篇
  2001年   10篇
  2000年   11篇
  1999年   7篇
  1998年   13篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
排序方式: 共有1202条查询结果,搜索用时 15 毫秒
141.
We previously proposed that the dimeric cytochrome bc1 complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc1 monomers (Covian, R., Kleinschroth, T., Ludwig, B., and Trumpower, B. L. (2007) J. Biol. Chem. 282, 22289–22297). Here, we demonstrate the previously proposed half-of-the-sites reactivity and intermonomeric electron transfer by characterizing the kinetics of ubiquinol oxidation in the dimeric bc1 complex from Paracoccus denitrificans that contains an inactivating Y147S mutation in one or both cytochrome b subunits. The enzyme with a Y147S mutation in one cytochrome b subunit was catalytically fully active, whereas the activity of the enzyme with a Y147S mutation in both cytochrome b subunits was only 10–16% of that of the enzyme with fully wild-type or heterodimeric cytochrome b subunits. Enzyme with one inactive cytochrome b subunit was also indistinguishable from the dimer with two wild-type cytochrome b subunits in rate and extent of reduction of cytochromes b and c1 by ubiquinol under pre-steady-state conditions in the presence of antimycin. However, the enzyme with only one mutated cytochrome b subunit did not show the stimulation in the steady-state rate that was observed in the wild-type dimeric enzyme at low concentrations of antimycin, confirming that the half-of-the-sites reactivity for ubiquinol oxidation can be regulated in the wild-type dimer by binding of inhibitor to one ubiquinone reduction site.  相似文献   
142.
The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Q(o) site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: 1) The Q(o) site semiquinone (or quinol-imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O(2) reduction; 2) the Q(o) site semiquinone is highly stabilized making it unreactive toward oxygen; and 3) the Q(o) site catalyzes a quantum mechanically coupled two-electron/two-proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data support models where the rate-limiting step for both Q-cycle and superoxide production is essentially identical, consistent with model 1 but requiring modifications to models 2 and 3.  相似文献   
143.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   
144.
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6   总被引:31,自引:0,他引:31  
The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.  相似文献   
145.
Escherichia coli microcin J25 (MccJ25) is a plasmid-encoded antibiotic peptide consisting of 21 L-amino acid residues (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G). E. coli RNA polymerase (RNAP) is the intracellular target of MccJ25. MccJ25 enters cells after binding to specific membrane transporters: FhuA in the outer membrane and SbmA in the inner membrane. Here, we studied MccJ25 mutants carrying a substitution of His5 by Lys, Arg, or Ala. The inhibitory effects on cellular growth and in vitro RNAP activity were determined for each mutant microcin. The results show that all mutants inhibited RNAP in vitro. However, the mutants were defective in their ability to inhibit cellular growth. Experiments in which the FhuA protein was bypassed showed that substitutions of MccJ25 His5 affected the SbmA-dependent transport. Our results thus suggest that MccJ25 His5 located in the lariat ring is involved, directly or indirectly, in specific interaction with SbmA and is not required for MccJ25 inhibition of RNAP.  相似文献   
146.
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex.  相似文献   
147.
We have previously shown the augmented levels of Gialpha-2 and Gialpha-3 proteins (isoforms of inhibitory guanine nucleotide regulatory protein (G-protein)), and not of Gsalpha, in the hearts and aortas of spontaneously and experimentally induced hypertensive rats. The increased expression of Gialpha and blood pressure was restored toward WKY levels by captopril treatment, suggesting a role for angiotensin (Ang) II in the enhanced expression of Gialpha protein and blood pressure. This study was undertaken to investigate whether 1 kidney 1 clip (1K-1C) hypertensive rats that exhibit enhanced levels of Ang II also express enhanced levels of Gialpha proteins. Aortas from 1K-1C hypertensive rats were used. The expression of G-proteins was determined at protein levels with immunoblotting techniques, using specific antibodies for different isoforms of G-proteins. The levels of Gialpha-2 and Gialpha-3 proteins were significantly higher in aortas from 1K-1C hypertensive rats than in control rats; Gsalpha levels were unchanged. The inhibitory effect of low concentrations of guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) on forskolin (FSK)-stimulated adenylyl cyclase (AC) activity was significantly enhanced in aortas from 1K-1C hypertensive rats; the inhibitory effect of C-ANP(4-23), which specifically interacts with the atrial natriuretic peptide (ANP)-C receptor, and Ang II on AC was attenuated. GTPgammaS, isoproterenol, glucagon, NaF, and FSK stimulated the AC activity in aortas from control and hypertensive rats to varying degrees; however, the stimulations were significantly lower in hypertensive rats than in control rats. These data suggest that aortas from 1K-1C hypertensive rats exhibit enhanced expression of Gialpha proteins and associated functions.  相似文献   
148.
149.
UV-B is an abiotic environmental stress in both plants and animals. Abscisic acid (ABA) is a phytohormone regulating fundamental physiological functions in plants, including response to abiotic stress. We previously demonstrated that ABA is an endogenous stress hormone also in animal cells. Here, we investigated whether autocrine ABA regulates the response to UV-B of human granulocytes and keratinocytes, the cells involved in UV-triggered skin inflammation. The intracellular ABA concentration increased in UV-B-exposed granulocytes and keratinocytes and ABA was released into the supernatant. The UV-B-induced production of NO and of reactive oxygen species (ROS), phagocytosis, and cell migration were strongly inhibited in granulocytes irradiated in the presence of a monoclonal antibody against ABA. Moreover, presence of the same antibody strongly inhibited release of NO, prostaglandin E2 (PGE(2)), and tumor necrosis factor-α (TNF-α) by UV-B irradiated keratinocytes. Lanthionine synthetase C-like protein 2 (LANCL2) is required for the activation of the ABA signaling pathway in human granulocytes. Silencing of LANCL2 in human keratinocytes by siRNA was accompanied by abrogation of the UV-B-triggered release of PGE(2), TNF-α, and NO and ROS production. These results indicate that UV-B irradiation induces ABA release from human granulocytes and keratinocytes and that autocrine ABA stimulates cell functions involved in skin inflammation.  相似文献   
150.
Sampling methods for square and boll-feeding plant bugs (Hemiptera: Miridae) occurring on cotton, Gossypium hirsutum L., were compared with the intent to assess if one approach was viable for two species occurring from early-season squaring to late bloom in 25 fields located along the coastal cotton growing region of south Texas. Cotton fleaphopper, Pseudatomoscelis seriatus (Reuter), damages squares early-season and dominated collections using five sampling methods (approximately 99% of insects collected). A major species composition shift occurred beginning at peak bloom in coastal fields, when verde plant bug, Creontiades signatus Distant, represented 55-65% of collections. Significantly more cotton fleahoppers were captured by experienced samplers with the beat bucket and sweep net than with the other methods (30-100% more). There were more than twice as many verde plant bugs captured by experienced and inexperienced samplers with the beat bucket and sweep net than captured with the KISS and visual methods. Using a beat bucket or sweep net reduced sampling time compared with the visual method for the experienced samplers. For both species, comparing regressions of beat bucket-based counts to counts from the traditional visual method across nine cultivar and water regime combinations resulted in only one combination differing from the rest, suggesting broad applicability and ability to translate established visual-based economic thresholds to beat bucket-based thresholds. In a first look at sample size considerations, 40 plants (four 10-plant samples) per field site was no more variable than variation associated with larger sample sizes. Overall, the beat bucket is much more effective in sampling for cotton fleahopper and verde plant bug than the traditional visual method, it is more suited to cotton fleahopper sampling early-season when plants are small, it transitions well to sample for verde plant bug during bloom, and it performs well under a variety of soil moisture conditions and cultivar selections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号