首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   110篇
  1486篇
  2023年   9篇
  2022年   13篇
  2021年   32篇
  2020年   16篇
  2019年   21篇
  2018年   33篇
  2017年   19篇
  2016年   25篇
  2015年   63篇
  2014年   83篇
  2013年   74篇
  2012年   106篇
  2011年   93篇
  2010年   55篇
  2009年   52篇
  2008年   66篇
  2007年   74篇
  2006年   75篇
  2005年   56篇
  2004年   60篇
  2003年   54篇
  2002年   44篇
  2001年   14篇
  2000年   13篇
  1999年   9篇
  1998年   14篇
  1996年   6篇
  1995年   7篇
  1994年   8篇
  1993年   8篇
  1992年   16篇
  1991年   13篇
  1990年   15篇
  1989年   15篇
  1988年   6篇
  1987年   12篇
  1986年   12篇
  1985年   9篇
  1984年   9篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1977年   7篇
  1976年   9篇
  1968年   6篇
  1967年   6篇
  1929年   6篇
  1922年   5篇
  1913年   5篇
排序方式: 共有1486条查询结果,搜索用时 15 毫秒
161.
Troponin C (TpnC), the calcium-binding subunit of the troponin regulatory complex in the muscle thin filament, is encoded by multiple genes in insects. To understand how TpnC genes have evolved, we characterized the gene number and structure in a number of insect species. The TpnC gene complement is five genes in Drosophilidae as previously reported for D. melanogaster. Gene structures are almost identical in D. pseudoobscura, D. suboboscura, and D. virilis. Developmental patterns of expression are also conserved in Drosophila subobscura and D. virilis. Similar, but not completely equivalent, TpnC gene repertoires have been identified in the Anopheles gambiae and Apis mellifera genomes. Insect TpnC sequences can be divided into three groups, allowing a systematic classification of newly identified genes. The pattern of expression of the Apis mellifera genes essentially agrees with the pattern in Drosophilidae, providing further functional support to the classification. A model for the evolution of the TpnC genes is proposed including the most likely pathway of insect TpnC diversification. Our results suggest that the rapid increase in number and sequence specialization of the adult Type III isoforms can be correlated with the evolution of the holometabolous mode of development and the acquisition of asynchronous indirect flight muscle function in insects. This evolutionarily specialization has probably been achieved independently in different insect orders.Reviewing Editor: Dr. Rüdiger Cerff  相似文献   
162.
Cardiovascular disease (CVD) is a major cause of mortality in the Republic of Mexico, and metabolic syndrome, a complex of CVD risk factors, is increasingly prevalent. To date, however, there have been few studies of the genetic epidemiology of metabolic syndrome in Mexico. As a first step in implementing the GEMM Family Study, a large, multicenter collaborative study, we recruited 375 individuals in 21 extended families, without ascertainment on disease, at 9 medical institutions across Mexico. Participants were measured for anthropometric (stature, weight, waist circumference) and hemodynamic (blood pressure, heart rate) phenotypes; glucose, cholesterol, and triglyceride levels were measured in fasting blood. Variance components-based quantitative genetic analyses were performed using SOLAR. All phenotypes except diastolic blood pressure were significantly heritable. Consistent with the definition of metabolic syndrome, many phenotypes exhibited significant environmental correlation, and significant genetic correlations were found between measures of adiposity and fasting glucose and fasting triglyceride levels. These preliminary data represent the first heritability estimates for many of these phenotypes in the Republic of Mexico and indicate that this study design offers excellent power for future gene discovery relative to metabolic disease.  相似文献   
163.
Cells of onion and garlic root tips were examined under the electron and phase contrast microscopes after fixation in KMnO4. Special attention was focused on the distribution and behavior of the endoplasmic reticulum (ER) during the several phases of mitosis. Slender profiles, recognized as sections through thin lamellar units of the ER (most prominent in KMnO4-fixed material), are distributed more or less uniformly in the cytoplasm of interphase cells and show occasional continuity with the nuclear envelope. In late prophase the nuclear envelope breaks down and its remnants plus cytoplasmic elements of the ER, which are morphologically identical, surround the spindle in a zone from which mitochondria, etc., are excluded. During metaphase these ER elements persist and concentrate as two separate systems in the polar caps or zones of the spindle. At about this same time they begin to proliferate and to invade the ends of the spindle. The invading lamellar units form drape-like partitions between the anaphase chromosomes. In late anaphase, their advancing margins reach the middle zone of the spindle and begin to fray out. Finally, in telophase, while elements of the ER in the poles of the spindle coalesce around the chromosomes to form the new envelope, the advancing edges of those in the middle zone reticulate at the level of the equator to form a close lattice of tubular elements. Within this, which is identified as the phragmoplast, the earliest signs of the cell plate appear in the form of small vesicles. These subsequently grow and fuse to complete the separation of the two protoplasts. Other morphological units apparently participating in mitosis are described. Speculation is provided on the equal division or not of the nuclear envelope and the contribution the envelope fragments make to the ER of the new cell.  相似文献   
164.
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.  相似文献   
165.
The mechanism of the hydrolysis reaction of guanosine triphosphate (GTP) by the protein complex Ras-GAP (p21(ras) - p120(GAP)) has been modeled by the quantum mechanical-molecular mechanical (QM/MM) and ab initio quantum calculations. Initial geometry configurations have been prompted by atomic coordinates of a structural analog (PDBID:1WQ1). It is shown that the minimum energy reaction path is consistent with an assumption of two-step chemical transformations. At the first stage, a unified motion of Arg789 of GAP, Gln61, Thr35 of Ras, and the lytic water molecule results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low-barrier transition state TS1. At the second stage, Gln61 abstracts and releases protons within the subsystem including Gln61, the lytic water molecule and the gamma-phosphate group of GTP through the corresponding transition state TS2. Direct quantum calculations show that, in this particular environment, the reaction GTP + H(2)O --> GDP + H(2)PO(4) (-) can proceed with reasonable activation barriers of less than 15 kcal/mol at every stage. This conclusion leads to a better understanding of the anticatalytic effect of cancer-causing mutations of Ras, which has been debated in recent years.  相似文献   
166.
In an effort to better understand the ancestral state of the human distal gut microbiome, we examine feces retrieved from archaeological contexts (coprolites). To accomplish this, we pyrosequenced the 16S rDNA V3 region from duplicate coprolite samples recovered from three archaeological sites, each representing a different depositional environment: Hinds Cave (∼8000 years B.P.) in the southern United States, Caserones (1600 years B.P.) in northern Chile, and Rio Zape in northern Mexico (1400 years B.P.). Clustering algorithms grouped samples from the same site. Phyletic representation was more similar within sites than between them. A Bayesian approach to source-tracking was used to compare the coprolite data to published data from known sources that include, soil, compost, human gut from rural African children, human gut, oral and skin from US cosmopolitan adults and non-human primate gut. The data from the Hinds Cave samples largely represented unknown sources. The Caserones samples, retrieved directly from natural mummies, matched compost in high proportion. A substantial and robust proportion of Rio Zape data was predicted to match the gut microbiome found in traditional rural communities, with more minor matches to other sources. One of the Rio Zape samples had taxonomic representation consistent with a child. To provide an idealized scenario for sample preservation, we also applied source tracking to previously published data for Ötzi the Iceman and a soldier frozen for 93 years on a glacier. Overall these studies reveal that human microbiome data has been preserved in some coprolites, and these preserved human microbiomes match more closely to those from the rural communities than to those from cosmopolitan communities. These results suggest that the modern cosmopolitan lifestyle resulted in a dramatic change to the human gut microbiome.  相似文献   
167.
KRAB-containing zinc-finger repressor proteins   总被引:5,自引:0,他引:5  
  相似文献   
168.
Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.  相似文献   
169.
170.
We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead‐Glu) or carboxyl groups through acid solution (Immobead‐Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β‐galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead‐Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10–500 mg g?1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g?1 support. Gal immobilized on Immobead‐Glu and Immobead‐Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half‐lifes than the soluble enzyme, where the half‐lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934–943, 2018  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号