首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   44篇
  509篇
  2022年   5篇
  2021年   3篇
  2019年   6篇
  2018年   4篇
  2016年   9篇
  2015年   17篇
  2014年   27篇
  2013年   20篇
  2012年   29篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   21篇
  2007年   22篇
  2006年   27篇
  2005年   25篇
  2004年   25篇
  2003年   22篇
  2002年   22篇
  2001年   13篇
  2000年   19篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   8篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1973年   2篇
  1969年   5篇
  1968年   3篇
  1941年   3篇
  1940年   4篇
  1939年   4篇
  1936年   4篇
  1935年   2篇
排序方式: 共有509条查询结果,搜索用时 15 毫秒
31.
In vitro capacitation of dog spermatozoa in a medium without sugars and with lactate as the metabolic substrate (l-CCM) was accompanied by a progressive increase of intracellular glycogen during the first 2 h of incubation, which was followed by a subsequent decrease of glycogen levels after up to 4 h of incubation. Lactate from the medium is the source for the observed glycogen synthesis, as the presence of [(14)C]glycogen after the addition to l-CCM with [(14)C]lactate was demonstrated. The existence of functional gluconeogenesis in dog sperm was also sustained by the presence of key enzymes of this metabolic pathway, such as fructose 1,6-bisphophatase and aldolase B. On the other hand, glycogen metabolism from gluconeogenic sources was important in the maintenance of a correct in vitro fertilization after incubation in the l-CCM. This was demonstrated after the addition of phenylacetic acid (PAA) to l-CCM. In the presence of PAA, in vitro capacitation of dog spermatozoa suffered alterations, which translated into changes in capacitation functional markers, like the increase in the percentage of altered acrosomes, a distinct motion pattern, decrease or even disappearance of capacitation-induced tyrosine phosphorylation, and increased heterogeneity of the chlorotetracycline pattern in capacitated cells. Thus, this is the first report indicating the existence of a functional glyconeogenesis in mammalian spermatozoa. Moreover, gluconeogenesis-linked glycogen metabolism seems to be of importance in the maintenance of a correct in vitro capacitation in dog sperm in the absence of hexoses in the medium.  相似文献   
32.
β(2)-Glycoprotein I (β(2)GPI) is an abundant plasma protein that binds to the surface of cells and particles expressing negatively charged lipids, but its physiological role remains unknown. Antibodies to β(2)GPI are found in patients with anti-phospholipid syndrome, a systemic autoimmune disease associated with vascular thrombosis and pregnancy morbidity. Although it has been suggested that anti-β(2)GPI antibodies activate endothelial cells and monocytes by signaling through TLR4, it is unclear how anti-β(2)GPI antibodies and/or β(2)GPI interact with TLR4. A number of mammalian proteins (termed "endogenous Toll-like receptor (TLR) ligands") have been reported to bind to TLR4, but, in most cases, subsequent studies have shown that LPS interaction with these proteins is responsible for TLR activation. We hypothesized that, like other endogenous TLR ligands, β(2)GPI interacts specifically with LPS and that this interaction is responsible for apparent TLR4 activation by β(2)GPI. Here, we show that both LPS and TLR4 are required for β(2)GPI to bind to and activate macrophages. Untreated β(2)GPI stimulated TNF-α production in TLR4-sufficient (but not TLR4-deficient) macrophages. In contrast, neither polymyxin B-treated nor delipidated β(2)GPI stimulated TNF-α production. Furthermore, β(2)GPI bound to LPS in a specific and dose-dependent manner. Finally, untreated β(2)GPI bound to the surface of TLR4-sufficient (but not TLR4-deficient) macrophages. Polymyxin B treatment of β(2)GPI abolished macrophage binding. Our findings suggest a potential new biological activity for β(2)GPI as a protein that interacts specifically with LPS and point to the need to evaluate newly discovered endogenous TLR ligands for potential interactions with LPS.  相似文献   
33.
Activation of specific mitogen-activated protein kinases (MAPKs) has been suggested to be involved in phenotype modulation of cells subjected to mechanical strain, which may be common to different mechano-sensitive cell types. We have submitted C2C12 myocytes to a static stretch and examined its effect upon the activation of ERK. Stretch induced a rapid but transient activation of ERK. This activation was however prevented when cells were pre-treated with inhibitors of p38 and calcineurin. The dependence of strain-induced ERK activation upon p38 suggests a cross-talk between these two pathways when mediating a response to a mechanical stimulus in this cell type. This suggests that cross relationships between these MAP kinases may be of crucial importance for myocyte phenotype modulation and differentiation in response to a mechanical stimulus.  相似文献   
34.
TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL.   总被引:39,自引:1,他引:39       下载免费PDF全文
TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.  相似文献   
35.
36.
The individual roles of the two TNFRs on dendritic cells (DC) are poorly understood. Investigating bone marrow-derived DC from TNFR-deficient mice, we found that cultures from TNFR1(-/-) mice continue to form proliferating clusters for 6-9 mo. In contrast, DC derived from wild-type, TNFR2(-/-), or TNFR1/2(-/-) mice survived for only 3-4 wk. DC obtained from these TNFR1(-/-) long term cultures (LTC) mice show an unusual mixed immature/mature phenotype. The continuous proliferation of the LTC is GM-CSF dependent and correlates with decreased protein levels of the cyclin-dependent kinase inhibitors p27(KIP1) and p21(CIP1). Prolonged survival of TNFR1(-/-) DC appears to be independent from NF-kappaB and Bcl-2 pathways and is rather enabled by the down-regulation of CD95, resulting in the resistance to CD95 ligand-induced apoptosis. These data point to proapoptotic signals mediated via TNFR1 and antiapoptotic signals mediated via TNFR2 in DC.  相似文献   
37.
The L1 adhesion molecule is a 200-220-kDa membrane glycoprotein of the Ig superfamily implicated in important neural processes including neuronal cell migration, axon outgrowth, learning, and memory formation. L1 supports homophilic L1-L1 binding that involves several Ig domains but can also bind with high affinity to the proteoglycan neurocan. It has been reported that neurocan can block homophilic binding; however, the mechanism of inhibition and the precise binding sites in both molecules have not been determined. By using fusion proteins, site-directed mutagenesis, and peptide blocking experiments, we have characterized the neurocan-binding site in the first Ig-like domain of human L1. Results from molecular modeling suggest that the sequences involved in neurocan binding are localized on the surface of the first Ig domain and largely overlap with the G-F-C beta-strands proposed to interact with the fourth Ig domain during homophilic binding. This suggests that neurocan may sterically hinder a proper alignment of L1 domains. We find that the C-terminal portion of neurocan is sufficient to mediate binding to the first Ig domain of L1, and we suggest that the sushi domain cooperates with a glycosaminoglycan side chain in forming the binding site for L1.  相似文献   
38.
In this study, the effect of lipopolysaccharide (LPS) on protein synthesis (PS) and intracellular signaling factors that regulate it have been investigated in C2C12 murine-derived myotubes. In particular, the role of Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinases (MAPKs) [p38 and extracelluar regulated protein kinase (ERK1/2)] have been examined. The direct effect of LPS on PS was measured at 3 and 18 h. LPS significantly decreased PS at 3 h but not at the 18-h time point. This effect was preceded by decreased Akt phosphorylation at 5 and 30 min after LPS administration. The mTOR phosphorylation exhibited a long time dose-dependent increase at all the time points. Similarly, the activity-related phosphorylation of p38 and ERK1/2 significantly increased in a time- and dose-dependent manner at all the time points. Polymyxin B abolished the LPS-induced decrease in PS rate. The phosphatidylinositol 3-kinase inhibitor LY-0294002 in combination with LPS significantly decreased the rate of PS by 81% and alone by 66%, respectively, for the 3- and 18-h time points, whereas p38 and ERK inhibitors in combination with LPS significantly decreased the rate PS rate at the 18-h time point by 41% and 59%, respectively, compared with control cells. In conclusion, LPS alone transiently decreased the rate of PS by 50% at 3 h; this effect is most likely mediated via the Toll-like receptor 4 (TLR4)-Akt/mTOR pathway, and both p38 and ERK when inhibited in the presence of LPS at 3 h have a similar effect in preventing the LPS-induced reduction in PS.  相似文献   
39.
40.
ATP and its degradation products play an important role as signaling molecules in the vascular system, and endothelial cells are considered to be an important source of nucleotide release. To investigate the mechanism and physiological significance of endothelial ATP release, we compared different pharmacological stimuli for their ability to evoke ATP release from first passage cultivated human umbilical vein endothelial cells (HUVECs). Agonists known to increase intracellular Ca(2+) levels (A23187, histamine, thrombin) induced a stable, non-lytic ATP release. Since thrombin proved to be the most robust and reproducible stimulus, the molecular mechanism of thrombin-mediated ATP release from HUVECs was further investigated. ATP rapidly increased with thrombin (1 U/ml) and reached a steady-state level after 4 min. Loading the cells with BAPTA-AM to capture intracellular calcium suppressed ATP release. The thrombin-specific, protease-activated receptor 1 (PAR-1)-specific agonist peptide TFLLRN (10 μM) fully mimicked thrombin action on ATP release. To identify the nature of the ATP-permeable pathway, we tested various inhibitors of potential ATP channels for their ability to inhibit the thrombin response. Carbenoxolone, an inhibitor of connexin hemichannels and pannexin channels, as well as Gd(3+) were highly effective in blocking the thrombin-mediated ATP release. Specifically targeting connexin43 (Cx43) and pannexin1 (Panx1) revealed that reducing Panx1 expression significantly reduced ATP release, while downregulating Cx43 was ineffective. Our study demonstrates that thrombin at physiological concentrations is a potent stimulus of endothelial ATP release involving PAR-1 receptor activation and intracellular calcium mobilization. ATP is released by a carbenoxolone- and Gd(3+)- sensitive pathway, most likely involving Panx1 channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号