首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   16篇
  299篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   8篇
  2014年   12篇
  2013年   17篇
  2012年   34篇
  2011年   18篇
  2010年   9篇
  2009年   11篇
  2008年   23篇
  2007年   17篇
  2006年   15篇
  2005年   11篇
  2004年   12篇
  2003年   17篇
  2002年   20篇
  2001年   1篇
  1999年   2篇
  1997年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   2篇
  1969年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
91.
Prototheca wickerhamii isolated from blood of 61-year-old kidney transplant patient was described. Although it is classified as an alga (genus Chlorella), the disease, protothecosis, is included under mycoses because of its clinical pathological presentations. Colony characteristics of P. wickerhamii are indistinguishable from other yeast-like organisms like Cryptococcus and Candida. Fortunately, commercial identification system for yeast can be used to identify this organism to the species level. Electron microscopy demonstrated "morula" or daisy-like appearance of its endosporulating sporangia. The organism was sensitive to amphotericin B by E test method. Even though human protothecosis is uncommon, it cannot be ignored because it is emerging as an opportunistic infection in immunosuppressed individuals. To our knowledge, this is the first reported case of disseminated algaemia due to P. wickerhamii in Malaysia.  相似文献   
92.
93.
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.  相似文献   
94.
Acetylornithine aminotransferase (AcOAT) is one of the key enzymes involved in arginine metabolism and catalyzes the conversion of N-acetylglutamate semialdehyde to N-acetylornithine (AcOrn) in the presence of L-glutamate. It belongs to the Type I subgroup II family of pyridoxal 5'-phosphate (PLP) dependent enzymes. E. coli biosynthetic AcOAT (eAcOAT) also catalyzes the conversion of N-succinyl-L-2-amino-6-oxopimelate to N-succinyl-L,L-diaminopimelate, one of the steps in lysine biosynthesis. In view of the critical role of AcOAT in lysine and arginine biosynthesis, structural studies were initiated on the enzyme from S. typhimurium (sAcOAT). The K(m) and k(cat)/K(m) values determined with the purified sAcOAT suggested that the enzyme had much higher affinity for AcOrn than for ornithine (Orn) and was more efficient than eAcOAT. sAcOAT was inhibited by gabaculine (Gcn) with an inhibition constant (K(i)) of 7 microM and a second-order rate constant (k(2)) of 0.16 mM(-1) s(-1). sAcOAT, crystallized in the unliganded form and in the presence of Gcn or L-glutamate, diffracted to a maximum resolution of 1.90 A and contained a dimer in the asymmetric unit. The structure of unliganded sAcOAT showed significant electron density for PLP in only one of the subunits (subunit A). The asymmetry in PLP binding could be attributed to the ordering of the loop L(alphak-) (betam) in only one subunit (subunit B; the loop from subunit B comes close to the phosphate group of PLP in subunit A). Structural and spectral studies of sAcOAT with Gcn suggested that the enzyme might have a low affinity for PLP-Gcn complex. Comparison of sAcOAT with T. thermophilus AcOAT and human ornithine aminotransferase suggested that the higher specificity of sAcOAT towards AcOrn may not be due to specific changes in the active site residues but could result from minor conformational changes in some of them. This is the first structural report of AcOAT from a mesophilic organism and could serve as a basis for drug design as the enzyme is important for bacterial cell wall biosynthesis.  相似文献   
95.
96.
97.
This research focused on optimizing the upstream process time for production of polyhydroxybutyrate (PHB) from sucrose by two-stage batch and fed-batch fermentation with Alcaligenes latus ATCC 29714. The study included selection of strain, two-stage batch fermentations with different time points for switching to nitrogen limited media (14, 16 or 18?h) and fed-batch fermentations with varied time points (similar to two stage) for introducing nitrogen limited media. The optimal strain to produce PHB using sucrose as carbon source was A. latus ATCC 29714 with maximum-specific growth rate of 0.38?±?0.01?h?1 and doubling time of 1.80?±?0.05?h. Inducing nitrogen limitation at 16?h and ending second stage at 26?h gave optimal performance for PHB production, resulting in a PHB content of 46.7?±?12.2?% (g PHB per g dry cell weight) at the end of fermentation. This was significantly higher (P?≤?0.05) (approximately 7?%) than the corresponding fed batch run in which nitrogen limitation was initiated at 16?h.  相似文献   
98.
Hepatitis C virus (HCV)-mediated liver disease progression may reflect distinct molecular mechanisms for increased hepatocyte growth and hepatic stellate cell activation. In this study, we have observed that primary human hepatocytes, when infected in vitro with cell culture-grown HCV genotype 1a or 2a, display viral RNA and protein expression. Infected hepatocytes displayed a fibroblast-like shape and an extended life span. To understand the changes at the molecular level, we examined epithelial-mesenchymal transition (EMT) markers. Increased mRNA and protein expression levels of vimentin, snail, slug, and twist and a loss of the epithelial cell marker E-cadherin were observed. Snail and twist, when examined separately, were upregulated in chronically HCV-infected liver biopsy specimens, indicating an onset of an active EMT state in the infected liver. An increased expression level of fibroblast-specific protein 1 (FSP-1) in the infected hepatocytes was also evident, indicating a type 2 EMT state. Infected hepatocytes had significantly increased levels of phosphorylated β-catenin (Ser552) as an EMT mediator, which translocated into the nucleus and activated Akt. The phosphorylation level of β-catenin at Thr41/Ser45 moieties was specifically higher in control than in HCV-infected hepatocytes, implicating an inactivation of β-catenin. Together, these results suggested that primary human hepatocytes infected with cell culture-grown HCV display EMT via the activation of the Akt/β-catenin signaling pathway. This observation may have implications for liver disease progression and therapeutic intervention strategies using inhibitory molecules.  相似文献   
99.
100.
Fungal pretreatment, using lignin-degrading microorganisms to improve lignocellulosic feedstocks with minimal energy input, is a potential alternative to physiochemical pretreatment methods. Identifying the kinetics for fungal pretreatment during solid substrate cultivation is needed to help establish the processing conditions for effective scale up of this technology. In this study, a set of mathematical models were proposed for describing the interactions between holocellulose consumption, lignin degradation, cellulase, ligninolytic enzyme, and the growth of Phanerochaete chrysosporium during a 14 day fungal pretreatment process. Model parameters were estimated and validated by the System Biology Toolbox in MatLab. Developed models provided sufficiently accurate predictions for fungal growth (R 2 = 0.97), holocellulose consumption (R 2 = 0.97), lignin degradation (R 2 = 0.93) and ligninolytic enzyme production (R 2 = 0.92), and fair prediction for cellulase production (R 2 = 0.61). The models provide valuable information for understanding the interactive mechanisms in biological systems as well as for fungal pretreatment process scale up and improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号