首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   16篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   8篇
  2014年   12篇
  2013年   17篇
  2012年   34篇
  2011年   18篇
  2010年   9篇
  2009年   11篇
  2008年   23篇
  2007年   17篇
  2006年   15篇
  2005年   11篇
  2004年   12篇
  2003年   17篇
  2002年   20篇
  2001年   1篇
  1999年   2篇
  1997年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   2篇
  1969年   1篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
11.
Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is approximately 5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial approximately 2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts.  相似文献   
12.
The expression and activity of epithelial proteinases is under stringent control to prevent aberrant hydrolysis of structural proteins and disruption of tissue architecture. E-cadherin-dependent cell-cell adhesion is also important for maintenance of epithelial structural integrity, and loss of E-cadherin expression has been correlated with enhanced invasive potential in multiple tumor models. To address the hypothesis that there is a functional link between E-cadherin and proteinase expression, we have examined the role of E-cadherin in proteinase regulation. By using a calcium switch protocol to manipulate junction assembly, our data demonstrate that initiation of de novo E-cadherin-mediated adhesive contacts suppresses expression of both relative matrix metalloproteinase-9 levels and net urinary-type plasminogen activator activity. E-cadherin-mediated cell-cell adhesion increases both phosphatidylinositol 3'-kinase (PI3-kinase)-dependent AKT phosphorylation and epidermal growth factor receptor-dependent MAPK/ERK activation. Pharmacologic inhibition of the PI3-kinase pathway, but not the epidermal growth factor receptor/MAPK pathway, prevents E-cadherin-mediated suppression of proteinases and delays junction assembly. Moreover, inhibition of junction assembly with a function-blocking anti-E-cadherin antibody stimulates proteinase-dependent Matrigel invasion. As matrix metalloproteinase-9 and urinary-type plasminogen activator potentiate the invasive activity of oral squamous cell carcinoma, these data suggest E-cadherin-mediated signaling through PI3-kinase can regulate the invasive behavior of cells by modulating proteinase secretion.  相似文献   
13.
14.
In a continuation of our study of the Rutaceae, detailed chemical investigation on Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia gave four new coumarins. The structures of the coumarins have been fully characterised by spectroscopic methods as 3",4"-dihydrocapnolactone 1, 2',3'-epoxyisocapnolactone 2, 8-hydroxyisocapnolactone-2',3'-diol 3 and 8-hydroxy-3",4"-dihydrocapnolactone-2',3'-diol 4.  相似文献   
15.
16.
A series of 2-amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and various analogues have been synthesized in excellent isolated yields starting from various arylidenemalononitrile and 3-amino-2-cyclohexen-1-one in 1-propanol as solvent at reflux temperature in the absence of any added catalyst. All the synthesized compounds were evaluated for their antifungal activity. The relationship between functional group variation and biological activity of the evaluated compounds is discussed in the article.  相似文献   
17.
18.
19.
Phosphoinositides represent only a small percentage of the total cellular lipid pool. Yet, these molecules play crucial roles in diverse intracellular processes such as signal transduction at membrane-cytosol interface, regulation of membrane trafficking, cytoskeleton organization, nuclear events, and the permeability and transport functions of the membrane. A central principle in such lipid-mediated signaling is the appropriate coordination of these events. Such an intricate coordination demands fine spatial and temporal control of lipid metabolism and organization, and consistent mechanisms for specifically coupling these parameters to dedicated physiological processes. In that regard, recent studies have identified Sec14-like phosphatidylcholine transfer protein (PITPs) as "coincidence detectors," which spatially and temporally link the diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. The integral role of PITPs in eukaryotic signal transduction design is amply demonstrated by the mammalian diseases associated with the derangements in the function of these proteins, to stress response and developmental regulation in plants, to fungal dimorphism and pathogenicity, to membrane trafficking in yeast, and higher eukaryotes. This review updates the recent advances made in the understanding of how these proteins, specifically PITPs of the Sec14-protein superfamily, operate at the molecular level and further describes how this knowledge has advanced our perception on the diverse biological functions of PITPs.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号