首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1180篇
  免费   83篇
  2023年   4篇
  2022年   9篇
  2021年   27篇
  2020年   15篇
  2019年   13篇
  2018年   13篇
  2017年   20篇
  2016年   22篇
  2015年   44篇
  2014年   54篇
  2013年   70篇
  2012年   97篇
  2011年   78篇
  2010年   50篇
  2009年   51篇
  2008年   63篇
  2007年   83篇
  2006年   68篇
  2005年   60篇
  2004年   59篇
  2003年   53篇
  2002年   47篇
  2001年   22篇
  2000年   20篇
  1999年   18篇
  1998年   8篇
  1997年   14篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   8篇
  1992年   20篇
  1991年   18篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   7篇
  1985年   6篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1978年   11篇
  1977年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1969年   3篇
  1967年   3篇
  1966年   5篇
排序方式: 共有1263条查询结果,搜索用时 31 毫秒
101.
Phosphoinositides represent only a small percentage of the total cellular lipid pool. Yet, these molecules play crucial roles in diverse intracellular processes such as signal transduction at membrane-cytosol interface, regulation of membrane trafficking, cytoskeleton organization, nuclear events, and the permeability and transport functions of the membrane. A central principle in such lipid-mediated signaling is the appropriate coordination of these events. Such an intricate coordination demands fine spatial and temporal control of lipid metabolism and organization, and consistent mechanisms for specifically coupling these parameters to dedicated physiological processes. In that regard, recent studies have identified Sec14-like phosphatidylcholine transfer protein (PITPs) as "coincidence detectors," which spatially and temporally link the diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. The integral role of PITPs in eukaryotic signal transduction design is amply demonstrated by the mammalian diseases associated with the derangements in the function of these proteins, to stress response and developmental regulation in plants, to fungal dimorphism and pathogenicity, to membrane trafficking in yeast, and higher eukaryotes. This review updates the recent advances made in the understanding of how these proteins, specifically PITPs of the Sec14-protein superfamily, operate at the molecular level and further describes how this knowledge has advanced our perception on the diverse biological functions of PITPs.  相似文献   
102.
Glutathione (GSH) has widely been known to be a multifunctional molecule especially as an antioxidant up until now, but has found a new role in plant defense signaling. Research from the past three decades indicate that GSH is a player in pathogen defense in plants, but the mechanism underlying this has not been elucidated fully. We have recently shown that GSH acts as a signaling molecule and mitigates biotic stress through non-expressor of PR genes 1 (NPR1)-dependent salicylic acid (SA)-mediated pathway. Transgenic tobacco with enhanced level of GSH (NtGB lines) was found to synthesize more SA, was capable of enhanced expression of genes belonging to NPR1-dependent SA-mediated pathway, were resistant to Pseudomonas syringae, the biotrophic pathogen and many SA-related proteins were upregulated. These results gathered experimental evidence on the mechanism through which GSH combats biotic stress. In continuation with our previous investigation we show here that the expression of glutathione S-transferase (GST), the NPR1-independent SA-mediated gene was unchanged in transgenic tobacco with enhanced level of GSH as compared to wild-type plants. Additionally, the transgenic plants were barely resistant to Botrytis cinerea, the necrotrophic pathogen. SA-treatment led to enhanced level of expression of pathogenesis-related protein gene (PR1) and PR4 as against short-chain dehydrogenase/reductase family protein (SDRLP) and allene oxide synthase (AOS). These data provided significant insight into the involvement of GSH in NPR1-dependent SA-mediated pathway in mitigating biotic stress.Key words: GSH, signaling molecule, biotrophic pathogen, NPR-1, PR-1, PR-4, transgenic tobaccoPlant responses to different environmental stresses are achieved through integrating shared signaling networks and mediated by the synergistic or antagonistic interactions with the phytohormones viz. SA, jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and reactive oxygen species (ROS).1 Previous studies have shown that in response to pathogen attack, plants produce a highly specific blend of SA, JA and ET, resulting in the activation of distinct sets of defense-related genes.2,3 Regulatory functions for ROS in defense, with a focus on the response to pathogen infection occur in conjunction with other plant signaling molecules, particularly with SA and nitric oxide (NO).46 Till date, numerous physiological functions have been attributed to GSH in plants.711 In addition to previous studies, recent study has also shown that GSH acts as a signaling molecule in combating biotic stress through NPR1-dependent SA-mediated pathway.12,13Our recent investigation involved raising of transgenic tobacco overexpressing gamma-glutamylcysteine synthetase (γ-ECS), the rate-limiting enzyme of the GSH biosynthetic pathway.12 The stable integration and enhanced expression of the transgene at the mRNA as well as protein level was confirmed by Southern blot, quantitative RT-PCR and western blot analysis respectively. The transgenic plants of the T2 generation (Fig. 1), the phenotype of which was similar to that of wild-type plants were found to be capable of synthesizing enhanced amount of GSH as confirmed by HPLC analysis.Open in a separate windowFigure 1Transgenic tobacco of T2 generation, (A) three-week-old plant, (B) mature plant.In the present study, the expression profile of GST was analyzed in NtGB lines by quantitative RT-PCR (qRT-PCR) and found that the expression level of this gene is unchanged in NtGB lines as compared to wild-type plants (Fig. 2). GST is known to be a NPR1-independent SA-related gene.14 This suggests that GSH does not follow the NPR1-independent SA-mediated pathway in defense signaling.Open in a separate windowFigure 2Expression pattern of GST in wild-type and NtGB lines.Disease test assay with NtGB lines and wild-type plants was performed using B. cinerea and the NtGB lines showed negligible rate of resistance to this necrotrophic pathogen (Fig. 3). SA signaling has been known to control defense against biotrophic pathogen in contrast, JA/ET signaling controls defense against necrotrophic pathogen.1,15 Thus it has again been proved that GSH is not an active member in the crosstalk of JA-mediated pathway, rather it follows the SA-mediated pathway as has been evidenced earlier.12Open in a separate windowFigure 3Resistance pattern of wild-type and NtGB lines against Botrytis cinerea.Additionally, the leaves of wild-type and NtGB lines were treated with 1 mM SA and the expression of PR1, SDRLP, AOS and PR4 genes were analyzed and compared to untreated plants to simulate pathogen infection. The expression of PR1 increased after exogenous application of SA. In case of PR4, the ET marker, the expression level increased in NtGB lines. On the other hand, the level of SDRLP was nearly the same. However, the expression of AOS was absent in SA-treated leaves (Fig. 4). PR1 has been known to be induced by SA-treatment16 which can be corroborated with our results. In addition, ET is known to enhance SA/NPR1-dependent defense responses,17 which was reflected in our study as well. AOS, the biosynthetic pathway gene of JA, further known to be the antagonist of SA, was downregulated in SA-treated plants.Open in a separate windowFigure 4Gene expression pattern of PR1, SDRLP, PR4 and AOS in untreated and SA-treated wildtype and NtGB lines.Taken together, it can be summarized that this study provided new evidence on the involvement of GSH with SA in NPR1-dependent manner in combating biotic stress. Additionally, it can be claimed that GSH is a signaling molecule which takes an active part in the cross-communication with other established signaling molecules like SA, JA, ET in induced defense responses and has an immense standpoint in plant defense signaling.  相似文献   
103.
Opsonin-independent phagocytosis of Group B Streptococcus (GBS) is important in defense against neonatal GBS infections. A recent study indicated a role for GBS pilus in macrophage phagocytosis (Maisey et al Faseb J 22 2008 1715-24). We studied 163 isolates from different phylogenetic backgrounds and those possessing or lacking the gene encoding the pilus backbone protein, Spb1 (SAN1518, PI-2b) and spb1-deficient mutants of wild-type (WT) serotype III-3 GBS 874391 in non-opsonic phagocytosis assays using J774A.1 macrophages. Numbers of GBS phagocytosed differed up to 23-fold depending on phylogenetic background; isolates possessing spb1 were phagocytosed more than isolates lacking spb1. Comparing WT GBS and isogenic spb1-deficient mutants showed WT was phagocytosed better compared to mutants; Spb1 also enhanced intracellular survival as mutants were killed more efficiently. Complementation of mutants restored phagocytosis and resistance to killing in J774A.1 macrophages. Spb1 antiserum revealed surface expression in WT GBS and spatial distribution relative to capsular polysaccharide. spb1 did not affect macrophage nitric oxide and TNF-alpha responses; differences in phagocytosis did not correlate with N-acetyl d-glucosamine (from GBS cell-wall) according to enzyme-linked lectin-sorbent assay. Together, these findings support a role for phylogenetic lineage and Spb1 in opsonin-independent phagocytosis and intracellular survival of GBS in J774A.1 macrophages.  相似文献   
104.

Background

The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains.

Methods and Findings

Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC50 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC50 of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro.

Conclusions

The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.  相似文献   
105.
Topical medication remains the first line treatment of glaucoma; however, sustained ocular drug delivery via topical administration is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Currently, daily topical administration for lowering the intra-ocular pressure (IOP), has many limitations, such as poor patient compliance and ocular allergy from repeated drug administration. Poor compliance leads to suboptimal control of IOP and disease progression with eventual blindness. The delivery of drugs in a sustained manner could provide the patient with a more attractive alternative by providing optimal therapeutic dosing, with minimal local toxicity and inconvenience. To investigate this, we incorporated latanoprost into LUVs (large unilamellar vesicles) derived from the liposome of DPPC (di-palmitoyl-phosphatidyl-choline) by the film hydration technique. Relatively high amounts of drug could be incorporated into this vesicle, and the drug resides predominantly in the bilayer. Vesicle stability monitored by size measurement and DSC (differential scanning calorimetry) analysis showed that formulations with a drug/lipid mole ratio of about 10% have good physical stability during storage and release. This formulation demonstrated sustained release of latanoprost in vitro, and then tested for efficacy in 23 rabbits. Subconjunctival injection and topical eye drop administration of the latanoprost/liposomal formulation were compared with conventional daily administration of latanoprost eye drops. The IOP lowering effect with a single subconjunctival injection was shown to be sustained for up to 50 days, and the extent of IOP lowering was comparable to daily eye drop administration. Toxicity and localized inflammation were not observed in any treatment groups. We believe that this is the first demonstration, in vivo, of sustained delivery to the anterior segment of the eye that is safe and efficacious for 50 days.  相似文献   
106.
Plankton is the basis of the entire aquatic food chain. Phytoplankton, in particular, occupies the first trophic level. Plankton performs services for the Earth: it serves as food for marine life, gives off oxygen and also absorbs half of the carbon dioxide from the Earth's atmosphere. The dynamics of a rapid (or massive) increase or decrease of plankton populations is an important subject in marine plankton ecology and generally termed as a 'bloom'. Harmful algal blooms (HABs) have adverse effects on human health, fishery, tourism, and the environment. In recent years, considerable scientific attention has been given to HABs. Toxic substances released by harmful plankton play an important role in this context. In this paper, a mathematical model consisting of two harmful phytoplankton and zooplankton system will be discussed. The analytical findings will be verified through our experimental observations which were carried out on the eastern part of Bay of Bengal for the last three years.  相似文献   
107.
The mammalian abasic-endonuclease1/redox-factor1 (APE1/Ref1) is an essential protein whose subcellular distribution depends on the cellular physiological status. However, its nuclear localization signals have not been studied in detail. We examined nuclear translocation of APE1, by monitoring enhanced green fluorescent protein (EGFP) fused to APE1. APE1's nuclear localization was significantly decreased by deleting 20 amino acid residues from its N-terminus. Fusion of APE1's N-terminal 20 residues directed nuclear localization of EGFP. An APE1 mutant lacking the seven N-terminal residues (ND7 APE1) showed nearly normal nuclear localization, which was drastically reduced when the deletion was combined with the E12A/D13A double mutation. On the other hand, nearly normal nuclear localization of the full-length E12A/D13A mutant suggests that the first 7 residues and residues 8–13 can independently promote nuclear import. Both far-western analyses and immuno-pull-down assays indicate interaction of APE1 with karyopherin alpha 1 and 2, which requires the 20 N-terminal residues and implicates nuclear importins in APE1's nuclear translocation. Nuclear accumulation of the ND7 APE1(E12A/D13A) mutant after treatment with the nuclear export inhibitor leptomycin B suggests the presence of a previously unidentified nuclear export signal, and the subcellular distribution of APE1 may be regulated by both nuclear import and export.  相似文献   
108.
Regulatory T cells and tumor immunity   总被引:9,自引:0,他引:9  
Central deletion of self-reactive T cells has been the textbook paradigm for inducing self-tolerance in the periphery and the concept of a role of T cell-mediated suppression in this process has long been controversial. A decisive shift in the opinion on suppressor T cells has lately occurred with the observations of Sakaguchis group that linked a class of CD4+CD25+ T cells to the prevention of autoimmunity from neonatal thymectomy in mice. These CD4+CD25+ T cells have been named T regulatory (Treg) cells. They are believed to be selected in the thymus as an anti-self repertoire. Hence they were referred to as natural T regulatory (nTreg) cells. Presently, in addition to their role in autoimmunity, they are believed to exert regulatory function in infection, in transplantation immunity as well as in tumor immunity. In contrast to these nTreg cells, another class of CD4+ Treg cells also exercises regulatory function in the periphery. These Treg cells are also CD4+ T cells and after activation they also become phenotypically CD4+CD25+. They are, however induced in the periphery as Treg cells. Hence, they are termed as induced Treg (iTreg) cells. There are major differences in the biology of these two types of Treg cells. They differ in their requirements for activation and in their mode of action. Nonetheless, evidence indicates that both nTreg cells and iTreg cells are involved in the control of tumor immunity. The question of how to circumvent their regulatory constraints, therefore, has become a major challenge for tumor immunologists.  相似文献   
109.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT(1A) receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT(1A) receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT(1A) receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT(1A) receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT(1A) receptor function.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号