首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   30篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   11篇
  2020年   10篇
  2019年   10篇
  2018年   11篇
  2017年   18篇
  2016年   12篇
  2015年   8篇
  2014年   24篇
  2013年   34篇
  2012年   23篇
  2011年   15篇
  2010年   18篇
  2009年   11篇
  2008年   19篇
  2007年   6篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1970年   2篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
31.
The CaMV 35S promoter is the most commonly used promoter for driving transgene expression in plants. Though it is presumed to be a constitutive promoter, some reports suggest that it is not expressed in all cell types. In addition, the information available on its expression profile in all possible cell and tissue types and during early stages of development is incomplete. We present here a detailed expression profile of this promoter investigated using the green fluorescent protein (GFP) gene as a reporter system in cotton during embryo development, and in all the vegetative and floral cell and tissue types. GFP expression was not detected during the early stages of embryogenesis. The first perceptible GFP expression was observed in a small area at the junction of hypocotyl and cotyledons in embryos at around 13 days after anthesis. The GFP fluorescence progressively became stronger and expanded throughout the cotyledon and hypocotyl as embryo development advanced. After germination, varying levels of promoter activity were observed in all cell and tissue types in the hypocotyl, cotyledon, stem, leaf, petiole, and root. The promoter was also expressed in all floral parts. Although cotton pollen exhibited a low level of greenish autofluorescence, it was possible to discern GFP-dependent fluorescence in some of the pollen from all the T0 plants examined. Developing cotton fibers also exhibited GFP fluorescence suggesting that the 35S promoter was active in these specialized epidermal cells. Thus, we show that the expression of the 35S promoter was developmentally regulated during embryogenesis and that beyond a certain stage during embryogenesis, the promoter was expressed in most cell and tissue types in cotton albeit at different levels.  相似文献   
32.
Mycoparasitic fungi are proving to be rich sources of antifungal genes that can be utilized to genetically engineer important crops for resistance against fungal pathogens. We have transformed cotton and tobacco plants with a cDNA clone encoding a 42 kDa endochitinase from the mycoparasitic fungus, Trichoderma virens. Plants from 82 independently transformed callus lines of cotton were regenerated and analysed for transgene expression. Several primary transformants were identified with endochitinase activities that were significantly higher than the control values. Transgene integration and expression was confirmed by Southern and Northern blot analyses, respectively. The transgenic endochitinase activities were examined in the leaves of transgenic tobacco as well as in the leaves, roots, hypocotyls and seeds of transgenic cotton. Transgenic plants with elevated endochitinase activities also showed the expected 42 kDa endochitinase band in fluorescence, gel-based assays performed with the leaf extracts in both species. Homozygous T2 plants of the high endochitinase-expressing cotton lines were tested for disease resistance against a soil-borne pathogen, Rhizoctonia solani and a foliar pathogen, Alternaria alternata. Transgenic cotton plants showed significant resistance to both pathogens.  相似文献   
33.
34.
Micropropagation of Embelia ribes was achieved through proliferation of axillary shoots obtained from mature plants. Nodal shoot segments, collected March–May, exhibited high-frequency (75%) shoot initiation when cultured on Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ) at 1.13 μM and indole-3-butyric acid (IBA) at 0.49 μM. Subculture of sprouted shoots from the original explants on medium containing TDZ (1.13 and 0.45 μM) during the first and second subcultures was found essential for further shoot proliferation, while inhibition of shoot elongation by TDZ could be overcome by transferring shoot cultures onto MS medium containing 6-benzylaminopurine (BAP; 11.10 μM) for the third subculture. Treating the explants with an antioxidant mixture of 568 μM ascorbic acid, 119 μM citric acid, and 307 μM glutathione prior to inoculation, coupled with subculture at 2-wk intervals onto fresh medium, both helped to reduce browning of the explants and facilitated production of five to six shoots/explant. MS medium supplemented with BAP (4.44 μM) and IBA (0.49 μM) induced shoot multiplication, producing five to six shoots/explant with a shoot length of 3 to 4 cm over a 4-wk culture period. Shoots of 3 to 4 cm in length exhibited 100% rooting within 4 wk after transfer to media containing half the nutrient salt concentration of MS medium with 3.69 μM IBA. Ex vitro rooting in the greenhouse from the in vitro shoots treated with 4.93 μM IBA for 30 min exhibited 95% rooting in soilrite™ medium in a 4-wk period. About 85% of micropropagated plants were established successfully in root trainers. Three-month-old, hardened plants could further be successfully established in the field. In 1 yr, by using the above protocol, 3,200 plants could be produced from a single shoot and 2,700 could be established in the field.  相似文献   
35.
The current experiment aimed to study whether interactions with lipid metabolism possibly might explain the relative increased liver weight obtained in fish fed sub-optimal methionine levels. A basal diet based on a blend of plant proteins which is low in methionine (1.6 g Met/16 g N) was compared to a methionine adequate diet (2.2 g Met/16 g N) prepared by adding dl-methionine (2.4 g/kg) to the basal diet in the expense of wheat grain. Fish oil was used as the lipid source. The diets were balanced in all nutrients except methionine. The diets were fed to Atlantic salmon (500 g BW) for a period of 3 months. Feed intake did not differ, rendering the intake of all nutrients except methionine equal. Fish fed the low methionine diet had an increased liver size relative to body weight, indicating fat deposition in the liver. Fish given the sub-optimal methionine diet showed about six times higher fatty acid synthase (FAS) activity as compared to the fish fed the adequate methionine diet, indicating a higher de novo lipogenesis. A significant rise in the liver 18:1 to 18:0 fatty acid ratios also supported storage of lipids over fatty acid oxidation. Indeed, methionine limitation resulted in significantly higher TAG concentrations in the liver. Sub-optimal dietary methionine also resulted in lower hepatic taurine concentrations and the total bile acids concentrations were reduced in faeces and tended to be reduced in plasma. Taken together, our data show that salmon fed sub-optimal methionine levels had increased relative liver weight and developed signs commonly described in the early stage of non-alcoholic fatty liver disease in rodent models (increased FAS activity, changed fatty acid ratios and TAG accumulation).  相似文献   
36.
SFKs (Src family kinases) contribute importantly to platelet function in haemostasis. SFK activity is controlled by Csk (C-terminal Src kinase), which phosphorylates a C-terminal tyrosine residue on SFKs, resulting in inhibition of SFK activity. Csk is recruited to sites of SFK activity by tyrosine-phosphorylated Csk-binding proteins. Paxillin, a multidomain adaptor protein, has been shown to act as a Csk-binding protein and to inhibit Src activity during growth factor signalling. Human platelets express Hic-5, a member of the paxillin family; however, its ability to act as a Csk-binding protein has not been characterized. We sought to identify and characterize the ability of paxillin family members to act as Csk-binding proteins during platelet activation. We found that murine and human platelets differ in the complement of paxillin family members expressed. Human platelets express Hic-5, whereas murine platelets express paxillin and leupaxin in addition to Hic-5. In aggregating human platelets, Hic-5 was tyrosine phosphorylated and recruited Csk via its SH2 domains. In aggregating murine platelets, however, Csk bound preferentially to paxillin, even though both paxillin and Hic-5 were abundantly present and became tyrosine phosphorylated. The SFK Lyn, but not Src or Fyn, was associated with paxillin family members in resting and aggregated human and murine platelets. Lyn, however, was phosphorylated on its C-terminal inhibitory tyrosine residue only following platelet aggregation, which was coincident with recruitment of Csk to paxillin and/or Hic-5 in a manner dependent on prior alpha(IIb)beta3 engagement. These observations support the notion that Hic-5 and paxillin function as negative feedback regulators of SFKs in aggregated platelets and that, when both are present, paxillin is preferentially used.  相似文献   
37.
Two basidiomycetous fungi (Merulius aureus syn. Phlebia sp. and an unidentified genus) and a deuteromycetous fungus (Fusarium sambucinum Fuckel MTCC 3788) were isolated from soils affected with effluents of a pulp and paper mill over several years. These isolates were immobilized on nylon mesh and the consortium was used for bioremediation of pulp and paper mill effluent in a continuously aerated bench-top bioreactor. The treatment resulted in the reduction of color, lignin and COD of the effluent in the order of 78.6%, 79.0% and 89.4% in 4 days. A major part of reductions in these parameters occurred within first 24h of the treatment, which was also characterized by a steep decline in the pH of the effluent. During this period, total dissolved solids, electrical conductivity and salinity of the effluent also registered marked decline. It is pertinent to note that this is the first report of bioremediation of pulp and paper mill effluent by an immobilized fungal consortium.  相似文献   
38.

CRISPR/Cas9 has emerged as a simple, yet efficient gene editing tool to generate targeted mutations in desired genes in crops plants. Agrobacterium tumefaciens, a reliable and inexpensive DNA-delivery mechanism into plant cells, has been used for the generation of CRISPR/Cas9-mediated mutations in crop plants, including potato. However, little information is available as to the progression of gene knockout during various stages of culture following the introduction of CRISPR components in this species. In the current study, the green fluorescent protein (gfp) transgene was first introduced in the genome of a potato variety, Yukon Gold. Two GFP-expressing lines, one with a single gfp copy integrated and another with four gfp copies integrated, were subjected to CRISPR/Cas9-mediated mutations in the transgene(s) using three different gRNAs. Disappearance of GFP fluorescence was monitored during the entire culture/regeneration process. Although all three gRNAs successfully knocked out the transgene(s), their efficiencies differed greatly and did not completely match the predicted scores by some guide RNA prediction tools. The nature of mutations in various knockout events was analyzed. Several lines containing four gfp-copies showed four different types of mutations. These findings suggest that it is possible to target all four alleles of a desired native gene in the tetraploid potato.

  相似文献   
39.

Suaeda fruticosa and S. monoica are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol–1 CO2 concentrations. SW salinity enhanced the growth in both species; however, compared with S. fruticosa, the S. monoica exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO2. Results demonstrated better photosynthetic performances of S. monoica under stress conditions at both levels of CO2, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents. S. monoica exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO2, which might be due to efficient upstream utilization of reducing power to fix the CO2. The δ13C results supported the operation of C4 CO2 fixation in S. monoica and C3 or intermediate pathway of CO2 fixation in S. fruticosa. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO2-induced abiotic stress tolerance in Suaeda. Higher activity of antioxidant enzymes in both species at both levels of CO2 help plants to combat the oxidative stress. Upregulation of NADP-dependent malic enzyme and NADP-dependent malate dehydrogenase genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C4 type CO2 fixation in S. monoica and an intermediate CO2 fixation in S. fruticosa could be the possible reason for the superior photosynthetic efficiency of S. monoica under stress conditions at elevated CO2.

  相似文献   
40.
Molecular Biology Reports - Plant establishment, growth, development and productivity are adversely affected by abiotic stresses that are dominant characteristics of environmentally...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号