全文获取类型
收费全文 | 24972篇 |
免费 | 15499篇 |
国内免费 | 2篇 |
专业分类
40473篇 |
出版年
2023年 | 13篇 |
2022年 | 85篇 |
2021年 | 387篇 |
2020年 | 2183篇 |
2019年 | 3714篇 |
2018年 | 3813篇 |
2017年 | 4092篇 |
2016年 | 4073篇 |
2015年 | 3978篇 |
2014年 | 3611篇 |
2013年 | 4033篇 |
2012年 | 1695篇 |
2011年 | 1413篇 |
2010年 | 2993篇 |
2009年 | 1746篇 |
2008年 | 623篇 |
2007年 | 221篇 |
2006年 | 217篇 |
2005年 | 265篇 |
2004年 | 247篇 |
2003年 | 235篇 |
2002年 | 231篇 |
2001年 | 244篇 |
2000年 | 180篇 |
1999年 | 127篇 |
1998年 | 8篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 7篇 |
1994年 | 6篇 |
1993年 | 4篇 |
1992年 | 6篇 |
1991年 | 4篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1981年 | 2篇 |
1977年 | 1篇 |
1889年 | 1篇 |
1882年 | 1篇 |
1881年 | 1篇 |
1873年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Shijian Jin Eric M. Fell Lucia Vina‐Lopez Yan Jing P. Winston Michalak Roy G. Gordon Michael J. Aziz 《Liver Transplantation》2020,10(20)
A highly stable phosphonate‐functionalized viologen is introduced as the redox‐active material in a negative potential electrolyte for aqueous redox flow batteries (ARFBs) operating at nearly neutral pH. The solubility is 1.23 m and the reduction potential is the lowest of any substituted viologen utilized in a flow battery, reaching ?0.462 V versus SHE at pH = 9. The negative charges in both the oxidized and the reduced states of 1,1′‐bis(3‐phosphonopropyl)‐[4,4′‐bipyridine]‐1,1′‐diium dibromide ( BPP?Vi ) effect low permeability in cation exchange membranes and suppress a bimolecular mechanism of viologen decomposition. A flow battery pairing BPP?Vi with a ferrocyanide‐based positive potential electrolyte across an inexpensive, non‐fluorinated cation exchange membrane at pH = 9 exhibits an open‐circuit voltage of 0.9 V and a capacity fade rate of 0.016% per day or 0.00069% per cycle. Overcharging leads to viologen decomposition, causing irreversible capacity fade. This work introduces extremely stable, extremely low‐permeating and low reduction potential redox active materials into near neutral ARFBs. 相似文献
93.
94.
Jolyon Troscianko Jared Wilson‐Aggarwal Claire N. Spottiswoode Martin Stevens 《Ecology and evolution》2016,6(20):7536-7545
Camouflage is one of the most widespread antipredator defences, and its mechanistic basis has attracted considerable interest in recent years. The effectiveness of camouflage depends on the interaction between an animal's appearance and its background. Concealment can therefore be improved by changes to an animal's own appearance, by behaviorally selecting an optimal background, or by modifying the background to better match the animal's own appearance. Research to date has largely focussed on the first of these mechanisms, whereas there has been little work on the second and almost none on the third. Even though a number of animal species may potentially modify their environment to improve individual‐specific camouflage, this has rarely if ever been quantitatively investigated, or its adaptive value tested. Kittlitz's plovers (Charadrius pecuarius) use material (stones and vegetation) to cover their nests when predators approach, providing concealment that is independent of the inflexible appearance of the adult or eggs, and that can be adjusted to suit the local surrounding background. We used digital imaging and predator vision modeling to investigate the camouflage properties of covered nests, and whether their camouflage affected their survival. The plovers' nest‐covering materials were consistent with a trade‐off between selecting materials that matched the color of the eggs, while resulting in poorer nest pattern and contrast matching to the nest surroundings. Alternatively, the systematic use of materials with high‐contrast and small‐pattern grain sizes could reflect a deliberate disruptive coloration strategy, whereby high‐contrast material breaks up the telltale outline of the clutch. No camouflage variables predicted nest survival. Our study highlights the potential for camouflage to be enhanced by background modification. This provides a flexible system for modifying an animal's conspicuousness, to which the main limitation may be the available materials rather than the animal's appearance. 相似文献
95.
Functional Inhibition of Aquaporin‐3 With a Gold‐Based Compound Induces Blockage of Cell Proliferation 下载免费PDF全文
96.
97.
Zeina Daher Ghislaine Recorbet Benoît Valot Frank Robert Thierry Balliau Sophie Potin Benoît Schoefs Eliane Dumas‐Gaudot 《Proteomics》2010,10(11):2123-2137
Despite the recognized importance of non‐photosynthetic plastids in a wide array of plant processes, the root plastid proteome of soil‐grown plants still remains to be explored. In this study, we used a protocol allowing the isolation of Medicago truncatula root plastids with sufficient protein recovery and purity for their subsequent in‐depth analysis by nanoscale capillary LC‐MS/MS. Besides providing the first picture of a root plastid proteome, the results obtained highlighted the identification of 266 protein candidates whose functional distribution mainly resembled that of wheat endosperm amyloplasts and tobacco proplastids together with displaying major differences to those reported for chloroplasts. Most of the identified proteins have a role in nucleic acid‐related processes (16%), carbohydrate (15%) and nitrogen/sulphur (12%) metabolisms together with stress response mechanisms (10%). It is noteworthy that BLAST searches performed against the proteins reported in different plastidomes allowed detecting 30 putative root plastid proteins for which homologues were previously unsuspected as plastid‐located, most of them displaying a common putative role in participating in the plant cell responses against abiotic and/or biotic stresses. Taken together, the data obtained provide new insights into the functioning of root plastids and reinforce the emerging idea for an important role of these organelles in sustaining plant defence reactions. 相似文献
98.
Tina B McKay Akhee Sarker‐Nag Desiree' Lyon John M Asara Dimitrios Karamichos 《Cell biochemistry and function》2015,33(5):341-350
Corneal scarring is the result of a disease, infection or injury. The resulting scars cause significant loss of vision or even blindness. To‐date, the most successful treatment is corneal transplantation, but it does not come without side effects. One of the corneal dystrophies that are correlated with corneal scarring is keratoconus (KC). The onset of the disease is still unknown; however, altered cellular metabolism has been linked to promoting the fibrotic phenotype and therefore scarring. We have previously shown that human keratoconus cells (HKCs) have altered metabolic activity when compared to normal human corneal fibroblasts (HCFs). In our current study, we present evidence that quercetin, a natural flavonoid, is a strong candidate for regulating metabolic activity of both HCFs and HKCs in vitro and therefore a potential therapeutic to target the altered cellular metabolism characteristic of HKCs. Targeted mass spectrometry‐based metabolomics was performed on HCFs and HKCs with and without quercetin treatment in order to identify variations in metabolite flux. Overall, our study reveals a novel therapeutic target OF Quercetin on corneal stromal cell metabolism in both healthy and diseased states. Clearly, further studies are necessary in order to dissect the mechanism of action of quercetin. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
99.
100.
The role of ungulates in nowadays temperate forests. A response to Fløjgaard et al. (DOI:10.1111/gcb.14029) 下载免费PDF全文