首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   33篇
  476篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   15篇
  2014年   17篇
  2013年   26篇
  2012年   19篇
  2011年   26篇
  2010年   13篇
  2009年   14篇
  2008年   17篇
  2007年   17篇
  2006年   22篇
  2005年   22篇
  2004年   18篇
  2003年   13篇
  2002年   18篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1996年   6篇
  1994年   4篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   9篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1978年   2篇
  1977年   14篇
  1976年   7篇
  1975年   2篇
  1974年   14篇
  1973年   6篇
  1971年   6篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   6篇
  1966年   2篇
排序方式: 共有476条查询结果,搜索用时 12 毫秒
41.
42.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   
43.
44.
Wolbachia are symbiotic endobacteria that infect the majority of filarial nematodes, including Wuchereria bancrofti, Brugia malayi and Onchocerca volvulus. Recent studies have suggested that Wolbachia are necessary for the reproduction and survival of filarial nematodes and have highlighted the use of antibiotic therapy such as tetracycline/doxycycline as a novel method of treatment for infections caused by these organisms. Before such therapy is conceived and implemented on a large scale, it is necessary to assess the prevalence of the endosymbiont in W. bancrofti from different geographical locations. We present data from molecular and electron microscopic studies to provide evidence for Wolbachia symbiosis in W. bancrofti microfilariae collected from two districts (Bankura and Birbhum) of West Bengal, India.  相似文献   
45.
Nonappa  Uday Maitra 《Steroids》2010,75(7):506-512
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3α,12α,16β-trihydroxy-5β-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3α,12α,16α-trihydroxy-5β-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di- and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16β-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3α,7α,16α-trihydroxy-5β-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties.  相似文献   
46.
The genome sequence of the cyanobacterium Synechocystis sp. PCC6803 revealed four Open reading frame (ORF) encoding putative inositol monophosphatase or inositol monophosphatase-like proteins. One of the ORFs, sll1383, is ∼870 base pair long and has been assigned as a probable myo-inositol 1 (or 4) monophosphatase (IMPase; EC 3.1.3.25). IMPase is the second enzyme in the inositol biosynthesis pathway and catalyses the conversion of L-myo-inositol 1-phosphate to free myo-inositol. The present work describes the functional assignment of ORF sll1383 as myo-inositol 1-phosphate phosphatase (IMPase) through molecular cloning, bacterial overexpression, purification and biochemical characterization of the gene product. Affinity (K m) of the recombinant protein for the substrate DL-myo-inositol 1-phosphate was found to be much higher (0.0034 ± 0.0003 mM) compared to IMPase(s) from other sources but in comparison V max (∼0.033 μmol Pi/min/mg protein) was low. Li+ was found to be an inhibitor (IC50 6.0 mM) of this enzyme, other monovalent metal ions (e.g. Na+, K+ NH4+) having no significant effect on the enzyme activity. Like other IMPase(s), the activity of this enzyme was found to be totally Mg2+ dependent, which can be substituted partially by Mn2+. However, unlike other IMPase(s), the enzyme is optimally active at ∼42°C. To the best of our knowledge, sll1383 encoded IMPase has the highest substrate affinity and specificity amongst the known examples from other prokaryotic sources. A possible application of this recombinant protein in the enzymatic coupled assay of L-myo-inositol 1-phosphate synthase (MIPS) is discussed.  相似文献   
47.
48.
The physiological significance of melatonin in the regulation of annual testicular events in a major carp Catla catla was evaluated through studies on the effects of graded dose (25, 50, or 100 µg/100 g body wt.) of melatonin exogenously administered for different durations (1, 15, or 30 days) and manipulation of the endogenous melatonin system by exposing the fish to constant darkness (DD) or constant light (LL) for 30 days. An identical experimental schedule was followed during the preparatory (February-March), pre-spawning (April-May), spawning (July-August), and post-spawning (September-October) phases of the annual cycle. Irrespective of the reproductive status of the carp, LL suppressed while DD increased the mid-day and mid-night values of melatonin compared to respective controls. Influences of exogenous melatonin varied in relation to the dose and duration of treatment and the reproductive status of the carp. However, testicular response to exogenous melatonin (at 100 µg, for 30 days) and DD in each reproductive phase was almost identical. Notably, precocious testicular maturation occurred in both DD and melatonin-injected fish during the preparatory phase and in LL carps during the pre-spawning phase. In contrast, testicular functions in both the melatonin-treated and DD fish were inhibited during the pre-spawning and spawning phases, while the testes did not respond to any treatment during the post-spawning phase. In conclusion, this study provided the first experimental evidence that melatonin plays a significant role in the regulation of annual testicular events in a sub-tropical surface-dwelling carp Catla catla, but the influence of this pineal hormone on the seasonal activity of testis varies in relation to the reproductive status of the concerned fish.  相似文献   
49.
Global expression profiling of pancreatic cancers has identified two cell surface molecules, claudin 4 and prostate stem cell antigen (PSCA), as being overexpressed in the vast majority of cases. Two antibodies, anti-claudin 4 and anti-PSCA, were radiolabeled with iodine 125 ((125)I) for imaging pancreatic cancer xenografts in mice using gamma scintigraphy and single-photon emission computed tomography-computed tomography (SPECT-CT). Immunofluorescence staining of intact and permeabilized Colo357 human pancreatic cancer cells showed strong extracellular staining by both anti-PSCA and anti-claudin 4. Biodistribution studies in claudin 4 and PSCA-expressing Colo357 and PANC-1 subcutaneous xenograft models in mice showed that [(125)I]anti-claudin 4 tumor to muscle ratio uptake was 4.3 in Colo357 at 6 days postinjection and 6.3 in PANC-1 xenografts at 4 days postinjection. Biodistribution of [(125)I]anti-PSCA showed tumor to muscle ratio uptake of 4.9 in Colo357 at 6 days postinjection. Planar gamma scintigraphic imaging in Colo357 xenograft-bearing mice showed clear tumor uptake of [(125)I]anti-claudin 4 by 24 hours postinjection and by 48 hours postinjection for [(125)I]anti-PSCA. SPECT-CT imaging with [(125)I]anti-claudin 4 and [(125)I]anti-PSCA in an L3.6PL orthotopic xenograft model showed strong tumor and spleen uptake at 5 days postinjection. Both anti-claudin 4 and anti-PSCA demonstrate promise as radiodiagnostic and possibly radiotherapeutic agents for human pancreatic cancers.  相似文献   
50.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号