首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1386篇
  免费   121篇
  1507篇
  2023年   7篇
  2022年   20篇
  2021年   37篇
  2020年   21篇
  2019年   27篇
  2018年   30篇
  2017年   32篇
  2016年   39篇
  2015年   50篇
  2014年   53篇
  2013年   85篇
  2012年   78篇
  2011年   99篇
  2010年   42篇
  2009年   40篇
  2008年   52篇
  2007年   81篇
  2006年   51篇
  2005年   52篇
  2004年   59篇
  2003年   37篇
  2002年   36篇
  2001年   36篇
  2000年   29篇
  1999年   27篇
  1998年   15篇
  1997年   11篇
  1995年   9篇
  1994年   11篇
  1993年   8篇
  1992年   27篇
  1991年   28篇
  1990年   25篇
  1989年   26篇
  1988年   15篇
  1987年   12篇
  1986年   12篇
  1985年   17篇
  1984年   8篇
  1983年   7篇
  1982年   8篇
  1981年   9篇
  1979年   16篇
  1978年   16篇
  1977年   6篇
  1976年   7篇
  1973年   9篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
排序方式: 共有1507条查询结果,搜索用时 8 毫秒
31.
Six T-DNA/Ds launch pad lines (T0) previously generated by Agrobacterium-mediated transformation of M 35-1 genotype of sorghum were confirmed by PCR. T1 plants of all six lines showed 3:1 segregation when sprayed with 12 ppm Basta herbicide, indicating single copy insertion, which was also confirmed by left border flanking sequence tag. Calli derived from pNU435-T0(1) primary transformant was co-infected with Agrobacterium-carrying iAc construct for transient expression of transposase to generate stable Ds-tagged mutants in the T0 generation. All nine regenerants were PCR-positive for Ds. However, four contained intact T-DNA/Ds launch pad, while five plants carried empty launch pad, indicating transposition of the Ds. One of these plants, IDs-T0(8), was negative for iAc PCR, indicating that it was a stable Ds-tagged mutant. Of the four plants with intact T-DNA/Ds, IDs-T0(5) carrying iAc was a double transformant and mutagenic, which can generate mutants in the subsequent generation. Hence, the transient expression of transposase system in sorghum reported here can be employed for high throughput mutagenesis.  相似文献   
32.
Zhu Z  Bhat KM 《Mechanisms of development》2011,128(7-10):483-495
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a sib fate. This causes both cells to adopt an RP2 fate. Furthermore, loss of function for Abelson tyrosine kinase also causes loss of asymmetric localization of Inscuteable and Numb and symmetric division of GMC-1, the loss of function for WAVE has a very weakly penetrant loss of asymmetry defect. These results define another role for Hem/Kette/Nap1 in a neural precursor cell during neurogenesis.  相似文献   
33.
34.
35.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.  相似文献   
36.
Many fungi are known to secrete lectins, but their functional roles are not clearly understood. Sclerotium rolfsii, a soilborne plant pathogenic fungus capable of forming fruiting bodies called sclerotial bodies, secrete a cell wall-associated Thomsen-Friedenreich antigen-specific lectin. To understand the functional role of this lectin, we examined its occurrence and expression during development of the fungus. Furthermore, putative endogenous receptors of the lectin were examined to substantiate the functional role of the lectin. Immunolocalization studies using FITC-labeled lectin antibodies revealed discrete distribution of lectin sites at the branching points of the developing mycelia and uniformly occurring lectin sites on the mature sclerotial bodies. During development of the fungus the lectin is expressed in small amounts on the vegetative mycelia and reaching very high levels in mature sclerotial bodies with a sudden spurt in secretion at the maturation stage. Capping of the lectin sites on the sclerotial bodies by lectin antibodies or haptens inhibit strongly the germination of these bodies, indicating functional significance of the lectin. At the maturation stage the lectin interacts with the cell wall-associated putative endogenous receptor leading to the aggregation of mycelium to form sclerotial bodies. The lectin-receptor complex probably acts as signaling molecule in the germination process of sclerotial bodies. Using biotinylated lectin, the receptors were identified by determining the specific lectin binding to lipid components, extracted from sclerotial bodies, and separated on thin-layer chromatograms. Preliminary characterization studies indicated that the receptors are glycosphingolipids and resemble inositolphosphoceramides. These findings together demonstrate the importance of lectin-receptor interactions to explain hitherto speculated functional role of the lectins and also the glycosphingolipids of fungi.  相似文献   
37.
38.
From a total of 47 known apolipoprotein A-I (apoA-I) mutations, only 18 are linked to low plasma HDL apoA-I concentrations, and 78% of these map to apoA-I helices 6 and 7 (residues 143-186). Gene transfer and transgenic mouse studies have shown that several helix 6 apoA-I mutations have reduced hepatic HDL production. Our objective was to examine the impact of helix 6 modifications on intracellular biosynthetic processing and secretion of apoA-I. Cells were transfected with wild-type or mutant apoA-I, radiolabeled with [(35)S]Met/Cys, and then placed in unlabeled medium for up to 4 h. Results show that >90% of newly synthesized wild-type apoA-I was secreted by 60 min. Over the same length of time, only 20% of helix 6 deletion mutant (Delta 6 apoA-I) was secreted, whereas 80% remained cell associated. Microscopic and biochemical studies revealed that cell-associated Delta 6 apoA-I was located predominantly within the cytoplasm as lipid-protein inclusions, whereas wild-type apoA-I was localized in the endoplasmic reticulum/Golgi. Results using other helix deletions or helix 6 substitution mutations indicated that only complete removal of helix 6 resulted in massive cytoplasmic accumulation. These data suggest that alterations in native apoA-I conformation can lead to aberrant trafficking and accumulation of apolipoprotein-phospholipid structures. Thus, conformation-dependent alterations in intracellular trafficking and turnover may underlie the reduced plasma HDL concentrations observed in individuals harboring deletion mutations within helix 6.  相似文献   
39.
(R)-Bgugaine is a natural pyrrolidine alkaloid from Arisarum vulgare, which shows antifungal and antibacterial activity. In this Letter, we have accomplished the simple synthesis of norbgugaine (demethylated form of natural bgugaine) employing Wittig olefination and cat. hydrogenation as the key steps and its biological studies are reported for the first time. The synthesized norbgugaine was evaluated for inhibition of quorum sensing mediated virulence factors (motility, biofilm formation, pyocyanin pigmentation, rhamnolipid production and LasA protease) in Pseudomonas aeruginosa wherein swarming motility is reduced by 95%, and biofilm formation by 83%.  相似文献   
40.
Rice is the most important crop for the majority of population across the world with sensitive behavior toward heavy metals such as chromium (Cr) in polluted regions. Although, there is no information on the Cr resistance phenotyping in rice. Herein, two different groups of rice cultivars (normal, and hybrid) were used, each group with 14 different rice cultivars. Firstly, seed germination analysis was conducted by evaluating various seed germination indices to identify the rice cultivars with greatest seed germination vigor. Furthermore, exposure of chromium (Cr) toxicity to 28 different rice varieties (NV1-NV14, HV1-HV14) caused noticeable plant biomass reduction. Subsequently, NV2, NV6, NV10, NV12, NV13 (normal type), HV1, HV4, HV8, and HV9 (hybrid types) were pragmatic as moderately sensitive varieties, while NV3, NV4, NV9, and NV14 (normal type), HV3, HV6, HV7, and HV13 were observed as moderately tolerant. Although, NV7, and HV10 were ranked most sensitive cultivars, and NV11, and HV14 were considered as most tolerant varieties as compared to the other rice (both groups) genotypes. Afterward, Cr induced reduction in chlorophyll pigments were significantly lesser in HV14 relative to NV11, NV7, and especially HV10, and as a result HV14 modulated the total soluble sugar level as well as reduced ROS accumulation, and MDA contents production by stimulating the antioxidant defense mechanism conspicuously which further reduced the electrolyte leakage as well. Our outcomes provide support to explore the Cr tolerance mechanism in cereal crops as well as knowledge about rice breeding with increased tolerance against Cr stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号