首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   28篇
  479篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   7篇
  2015年   26篇
  2014年   24篇
  2013年   30篇
  2012年   41篇
  2011年   32篇
  2010年   19篇
  2009年   19篇
  2008年   24篇
  2007年   25篇
  2006年   24篇
  2005年   28篇
  2004年   22篇
  2003年   22篇
  2002年   20篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1995年   2篇
  1993年   2篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1980年   3篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1964年   1篇
  1958年   1篇
  1953年   1篇
  1946年   1篇
  1941年   2篇
  1940年   1篇
  1939年   1篇
  1930年   1篇
  1909年   1篇
排序方式: 共有479条查询结果,搜索用时 0 毫秒
91.
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.  相似文献   
92.
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni. Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro. The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.  相似文献   
93.
Substances of low oxidation potential, which can also make available protons and hydrogen atoms, e.g. phenothiazines. NADH, and ascorbic acid efficiently reduce 1, 2-dioxetanes to their vic-diols by single-electron-transfer; a significant side reaction is catalytic decomposition of dioxetanes into the corresponding ketone fragments  相似文献   
94.
The incorporation of L-kynurenine (L-KYN) into kynurenic acid (KYNA) was examined in rat brain slices. KYNA was measured in the slices and in the incubation medium after purification by ion-exchange and HPLC chromatography. In pilot experiments, the formation of KYNA was confirmed by gas chromatography. KYNA was produced stereoselectively from L-KYN, and approximately 90% of the newly synthesized KYNA was recovered from the incubation medium. Intracellular KYNA was not actively retained by the tissue and was lost from the cells upon repeated washes. Thus, regulation of the levels of extracellular KYNA appears to occur at the level of L-KYN uptake and/or kynurenine transaminase, the biosynthetic enzyme of KYNA. KYNA production from L-KYN was linear up to 4 h and reached a plateau at a L-KYN concentration of 250 microM. The process was effectively inhibited by the transaminase inhibitor aminooxyacetic acid (IC50, approximately 25 microM), and showed pronounced regional distribution (hippocampus greater than cortical areas greater than thalamus much greater than cerebellum). The conversion of L-KYN to KYNA was dependent on oxygenation and on the presence of glucose in the incubation medium. Neither deletion of Ca2+ or Mg2+ nor addition of 20 mM Mg2+ had any effect. However, KYNA production was significantly attenuated in the absence of Cl- or in the presence of 50 mM K+ in the incubation medium. In Na+-free medium, the production of KYNA from L-KYN was increased by 30%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
95.
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.  相似文献   
96.
Signaling responses in plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal toxicity is one of the major abiotic stresses leading to hazardous health effects in animals and plants. Because of their high reactivity they can directly influence growth, senescence and energy synthesis processes. In this review a new indirect mechanism of heavy metal action is proposed. This mechanism is connected with the generation of reactive oxygen species (especially H2O2) and jasmonate and ethylene signaling pathways and shows that toxicity symptoms observed in plants may result from direct heavy metal influence as well as the activity of some signaling molecules induced by the stress action.  相似文献   
97.
98.
Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号