首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   57篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   14篇
  2020年   9篇
  2019年   13篇
  2018年   17篇
  2017年   6篇
  2016年   26篇
  2015年   42篇
  2014年   55篇
  2013年   82篇
  2012年   82篇
  2011年   69篇
  2010年   50篇
  2009年   43篇
  2008年   64篇
  2007年   63篇
  2006年   65篇
  2005年   55篇
  2004年   76篇
  2003年   50篇
  2002年   44篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   8篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1964年   1篇
排序方式: 共有1016条查询结果,搜索用时 250 毫秒
981.
Chromosomes have an intrinsic tendency to segregate into compartments, forming long‐distance contacts between loci of similar chromatin states. How genome compartmentalization is regulated remains elusive. Here, comparison of mouse ground‐state embryonic stem cells (ESCs) characterized by open and active chromatin, and advanced serum ESCs with a more closed and repressed genome, reveals distinct regulation of their genome organization due to differential dependency on BAZ2A/TIP5, a component of the chromatin remodeling complex NoRC. On ESC chromatin, BAZ2A interacts with SNF2H, DNA topoisomerase 2A (TOP2A) and cohesin. BAZ2A associates with chromatin sub‐domains within the active A compartment, which intersect through long‐range contacts. We found that ground‐state chromatin selectively requires BAZ2A to limit the invasion of active domains into repressive compartments. BAZ2A depletion increases chromatin accessibility at B compartments. Furthermore, BAZ2A regulates H3K27me3 genome occupancy in a TOP2A‐dependent manner. Finally, ground‐state ESCs require BAZ2A for growth, differentiation, and correct expression of developmental genes. Our results uncover the propensity of open chromatin domains to invade repressive domains, which is counteracted by chromatin remodeling to establish genome partitioning and preserve cell identity.  相似文献   
982.
Autoimmune bullous diseases (AIBDs) still represent a considerable a source of morbidity and mortality: early identification of a specific AIBD is often difficult due to overlapping clinical and/or laboratory features and time-consuming invasive laboratory tests. We aimed to investigate the potential role of a new imaging technology, line-field confocal optical coherence tomography (LC-OCT), in the non-invasive diagnosis of AIBDs. LC-OCT was performed at lesional, perilesional and contralateral healthy sites in 30 patients, before histology and direct immunofluorescence. LC-OCT examination was able to identify the level of split (subcorneal/suprabasal/subepidermal/sublamina densa), to provide detailed images of the bulla roof morphology and content (eg, erythrocytes/acantholytic cells/polymorphonucleates). Areas of intra/subepidermal detachment were also detected also at clinically normal perilesional skin sites. LC-OCT can support physicians, real time and at bed-site, in the differential diagnosis of various AIBDs and their mimickers. Moreover, it can be used for the identification of subclinical lesions and therapy tapering.  相似文献   
983.
The change of a normal, healthy cell to a transformed cell is the first step in the evolutionary arc of a cancer. While the role of oncogenes in this ‘passage’ is well known, the role of ion transporters in this critical step is less known and is fundamental to our understanding the early physiological processes of carcinogenesis. Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the normal tissue intracellular to extracellular pH gradient (ΔpHi to ΔpHe). When this perturbation in pH dynamics occurs during carcinogenesis is less clear. Very early studies using the introduction of different oncogene proteins into cells observed a concordance between neoplastic transformation and a cytoplasmic alkalinization occurring concomitantly with a shift towards glycolysis in the presence of oxygen, i.e. ‘Warburg metabolism’. These processes may instigate a vicious cycle that drives later progression towards fully developed cancer where the reversed pH gradient becomes ever more pronounced. This review presents our understanding of the role of pH and the NHE1 in driving transformation, in determining the first appearance of the cancer ‘hallmark’ characteristics and how the use of pharmacological approaches targeting pH/NHE1 may open up new avenues for efficient treatments even during the first steps of cancer development.  相似文献   
984.
985.
986.
987.
The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.  相似文献   
988.
The monoglyme [CH3OCH2CH2OCH3] and diglyme [CH3O(CH2CH2O)2CH3] adducts of the neodymium tris-hexafluoroacetylacetonato [Nd(hfa)3·monoglyme·H2O and Nd(hfa)3·diglyme] have been synthesised in a single step reaction. They have been characterized by elemental analyzes, mass spectrometry, and IR spectroscopy. Single crystal X-ray diffraction studies provide evidence of a mononuclear nine-coordinated complex with a monocapped square antiprismatic structure for the Nd(hfa)3·diglyme (monoclinic system, space group P21/n; a = 9.7717(2), b = 15.5723(4), c = 20.5620(5) Å, β = 103.668(2)°; Z = 4). The Nd(hfa)3·monoglyme·H2O consists of asymmetric units containing two similar molecules (monoclinic system, space group = C2; a = 16.7057(4), b = 12.2579(4), c = 29.3734(5) Å, β = 101.170(3)°, Z = 8).The mass transport properties of these adducts have been investigated by thermogravimetric analysis which revealed high volatility and good thermal stability with a residue left lower than 3%. The Nd(hfa)3·diglyme has been successfully applied to the low-pressure metal organic chemical vapor deposition (MOCVD) of NdBa2Cu3O7−δ thin films.  相似文献   
989.
Pyrosequencing of the 16S rRNA targeting RNA, community-level physiological profiles made with Biolog EcoPlates, proteolysis, and volatile component (VOC) analyses were mainly used to characterize the manufacture and ripening of the pasta filata cheese Caciocavallo Pugliese. Plate counts revealed that cheese manufacture affected the microbial ecology. The results agreed with those from culture-independent approaches. As shown by urea-PAGE, reverse-phase high pressure liquid chromatography (RP-HPLC), and free-amino-acid (FAA) analyses, the extent of secondary proteolysis mainly increased after 30 to 45 days of ripening. VOCs and volatile free fatty acids (VFFA) were identified by a purge-and-trap method (PT) and solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS), respectively. Except for aldehydes, the levels of most of VOCs and VFFA mainly increased from 30 to 45 days onwards. As shown through pyrosequencing analysis, raw cows'' milk was contaminated by Firmicutes (53%), Proteobacteria (39%), Bacteroidetes (7.8%), Actinobacteria (0.06%), and Fusobacteria (0.03%), with heterogeneity at the genus level. The primary starter Streptococcus thermophilus dominated the curd population. Other genera occurred at low incidence or sporadically. The microbial dynamics reflected on the overall physiological diversity. At 30 days, a microbial succession was clearly highlighted. The relative abundance of Streptococcus sp. and especially St. thermophilus decreased, while that of Lactobacillus casei, Lactobacillus sp., and especially Lactobacillus paracasei increased consistently. Despite the lower relative abundance compared to St. thermophilus, mesophilic lactobacilli were the only organisms positively correlated with the concentration of FAAs, area of hydrophilic peptide peaks, and several VOCs (e.g., alcohols, ketones, esters and all furans). This study showed that a core microbiota was naturally selected during middle ripening, which seemed to be the main factor responsible for cheese ripening.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号