首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   48篇
  870篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   37篇
  2020年   14篇
  2019年   23篇
  2018年   16篇
  2017年   19篇
  2016年   32篇
  2015年   42篇
  2014年   56篇
  2013年   62篇
  2012年   79篇
  2011年   86篇
  2010年   64篇
  2009年   23篇
  2008年   41篇
  2007年   40篇
  2006年   32篇
  2005年   36篇
  2004年   27篇
  2003年   27篇
  2002年   16篇
  2001年   13篇
  2000年   9篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
排序方式: 共有870条查询结果,搜索用时 15 毫秒
101.
During thymic development, the beta selection checkpoint is regulated by pre-T-cell receptor-initiated signals. Progression through this checkpoint is influenced by phosphorylation and activation of the serine/threonine kinases extracellular signal-regulated kinase 1 (ERK1) and ERK2, but the in vivo relevance of specific upstream players leading to ERK activation is not known. Here, using mice with a conditional loss of the shc1 gene or expressing mutants of ShcA, we demonstrate that the adapter protein ShcA is responsible for up to 70% of ERK activation in double-negative (DN) thymocytes in vivo and ex vivo. We also identify two specific tyrosines on ShcA that promote ERK phosphorylation in vivo, and mice expressing ShcA with mutations of these tyrosines show impaired DN thymocyte development. This work provides the first in vivo demonstration of the relative requirement of upstream adapters in controlling ERK activation during beta selection and suggests a dominant role for ShcA.  相似文献   
102.
The chelating behavior of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) (H2dapa) towards manganese(II), cadmium(II) and oxovanadium(IV) ions has been studied by elemental analyses, conductance measurements, magnetic properties and spectral (IR, 1H NMR, UV-Vis and EPR) studies. The IR spectral studies suggest the pentadentate nature of the ligand with pyridine nitrogen, two azomethine nitrogens and two carbonyl oxygen atoms as the ligating sites. Six coordinate structure for [VO(H2dapa)]SO4 · H2O and seven coordinate structures for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)Cl2] · H2O complexes have been proposed. Pentagonal bipyramidal geometry for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)(Cl2)] · H2O complexes was confirmed by single crystal analysis. The X-band EPR spectra of the oxovanadium(IV) and manganese(II) complexes in the polycrystalline state at room (300 K) and also at liquid nitrogen temperature (77 K) were recorded and their salient features are reported.  相似文献   
103.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   
104.
The DNA Sequencing Research Group (DSRG) of the ABRF conducted a study to assess the ability of DNA sequencing core facilities to successfully sequence a set of well-defined templates containing difficult repeats. The aim of this study was to determine whether repetitive templates could be sequenced accurately by using equipment and chemistries currently utilized in participating sequencing laboratories. The effects of primer and template concentrations, sequencing chemistries, additives, and instrument formats on the ability to successfully sequence repeat elements were examined. The first part of this study was an analysis of the results of 361 chromatograms from participants representing 40 different laboratories who attempted to sequence a panel of difficult-to-sequence templates using their best in-house protocols. The second part of this study was a smaller multi-laboratory evaluation of a single robust protocol with the same panel of templates. This study provides a measure of the potential success of different approaches to sequencing across homopolymer tracts and repetitive elements.  相似文献   
105.
Loss of function of dystonin cytoskeletal linker proteins causes neurodegeneration in dystonia musculorum (dt) mutant mice. Although much investigation has focused on understanding dt pathology, the diverse cellular functions of dystonin isoforms remain poorly characterized. In this paper, we highlight novel functions of the dystonin-a2 isoform in mediating microtubule (MT) stability, Golgi organization, and flux through the secretory pathway. Using dystonin mutant mice combined with isoform-specific loss-of-function analysis, we found dystonin-a2 bound to MT-associated protein 1B (MAP1B) in the centrosomal region, where it maintained MT acetylation. In dt neurons, absence of the MAP1B-dystonin-a2 interaction resulted in altered MAP1B perikaryal localization, leading to MT deacetylation and instability. Deacetylated MT accumulation resulted in Golgi fragmentation and prevented anterograde trafficking via motor proteins. Maintenance of MT acetylation through trichostatin A administration or MAP1B overexpression mitigated the observed defect. These cellular aberrations are apparent in prephenotype dorsal root ganglia and primary sensory neurons from dt mice, suggesting they are causal in the disorder.  相似文献   
106.
Urokinase-type plasminogen activator (uPA) is expressed by lung epithelial cells and regulates fibrin turnover and epithelial cell viability. PMA, LPS, and TNF-alpha, as well as uPA itself, induce uPA expression in lung epithelial cells. PMA, LPS, and TNF-alpha induce uPA expression through increased synthesis as well as stabilization of uPA mRNA, while uPA increases its own expression solely through uPA mRNA stabilization. The mechanism by which lung epithelial cells regulate uPA expression at the level of mRNA stability is unclear. To elucidate this process, we sought to characterize protein-uPA mRNA interactions that regulate uPA expression. Regulation of uPA at the level of mRNA stability involves the interaction of a ~40 kDa cytoplasmic-nuclear shuttling protein with a 66 nt uPA mRNA 3'UTR sequence. We purified the uPA mRNA 3'UTR binding protein and identified it as ribonucleotide reductase M2 (RRM2). We expressed recombinant RRM2 and confirmed its interaction with a specific 66 nt uPA 3'UTR sequence. Immunoprecipitation of cell lysates with anti-RRM2 antibody and RT-PCR for uPA mRNA confirmed that RRM2 binds to uPA mRNA. Treatment of Beas2B cells with uPA or LPS attenuated RRM2-endogenous uPA mRNA interactions, while overexpression of RRM2 inhibited uPA protein and mRNA expression through destabilization of uPA mRNA. LPS exposure of lung epithelial cells translocates RRM2 from the cytoplasm to the nucleus in a time-dependent manner, leading to stabilization of uPA mRNA. This newly recognized pathway could influence uPA expression and a broad range of uPA-dependent functions in lung epithelial cells in the context of lung inflammation and repair.  相似文献   
107.
The study of neurodegenerative disorders has had a major impact on our understanding of more fundamental mechanisms underlying neurobiology. Breakthroughs in the genetics of Alzheimer's (AD) and Parkinson's diseases (PD) has resulted in new knowledge in the areas of axonal transport, energy metabolism, protein trafficking/clearance and synaptic physiology. The major neurodegenerative diseases have in common a regional or network pathology associated with abnormal protein accumulation(s) and various degrees of motor or cognitive decline. In AD, β-amyloids are deposited in extracellular diffuse and compacted plaques as well as intracellularly. There is a major contribution to the disease by the co-existence of an intraneuronal tauopathy. Additionally, PD-like Lewy Bodies (LBs) bearing aggregated α-synuclein is present in 40-60% of all AD cases, especially involving amygdala. Amyloid deposits can be degraded or cleared by several mechanisms, including immune-mediated and transcytosis across the blood-brain barrier. Another avenue for disposal involves the lysosome pathway via autophagy. Enzymatic pathways include insulin degradative enzyme and neprilysin. Finally, the co-operative actions of C-terminus Hsp70 interacting protein (CHIP) and Parkin, components of a multiprotein E3 ubiquitin ligase complex, may be a portal to proteasome-mediated degradation. Mutations in the Parkin gene are the most common genetic link to autosomal recessive Parkinson's disease. Parkin catalyzes the post-translational modification of proteins with polyubiquitin, targeting them to the 26S proteasome. Parkin reduces intracellular Aβ(1-42) peptide levels, counteracts its effects on cell death, and reverses its effect to inhibit the proteasome. Additionally, Parkin has intrinsic cytoprotective activity to promote proteasome function and defend against oxidative stress to mitochondria. Parkin and CHIP are also active in amyloid clearance and cytoprotection in vivo. Parkin has cross-functionality in additional neurodegenerative diseases, for instance, to eliminate polyglutamine-expanded proteins, reducing their aggregation and toxicity and reinstate proteasome function. The dual actions of CHIP (molecular co-chaperone and E3 ligase) and Parkin (as E3-ubiquitin ligase and anti-oxidant) may also play a role in suppressing inflammatory reactions in animal models of neurodegeneration. In this review, we focus on the significance of CHIP and Parkin as inducers of amyloid clearance, as cytoprotectants and in the suppression of reactive inflammation. A case is made for more effort to explore whether neurodegeneration associated with proteinopathies can be arrested at early stages by promoting their mutual action.  相似文献   
108.
Ramasamy R  Yan SF  Schmidt AM 《Amino acids》2012,42(4):1151-1161
The formation of advanced glycation endproducts (AGEs) occurs in diverse settings such as diabetes, aging, renal failure, inflammation and hypoxia. The chief cellular receptor for AGEs, RAGE, transduces the effects of AGEs via signal transduction, at least in part via processes requiring the RAGE cytoplasmic domain binding partner, diaphanous-1 or mDia1. Data suggest that RAGE perpetuates the inflammatory signals initiated by AGEs via multiple mechanisms. AGE–RAGE interaction stimulates generation of reactive oxygen species and inflammation—mechanisms which enhance AGE formation. Further, recent data in type 1 diabetic kidney reveal that deletion of RAGE prevents methylglyoxal accumulation, at least in part via RAGE-dependent regulation of glyoxalase-1, a major enzyme involved in methylglyoxal detoxification. Taken together, these considerations place RAGE in the center of biochemical and molecular stresses that characterize the complications of diabetes and chronic disease. Stopping RAGE-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in these disorders.  相似文献   
109.
Well-saturated linkage maps especially those based on expressed sequence tag (EST)-derived genic molecular markers (GMMs) are a pre-requisite for molecular breeding. This is especially true in important legumes such as chickpea where few simple sequence repeats (SSR) and even fewer GMM-based maps have been developed. Therefore, in this study, 2,496 ESTs were generated from chickpea seeds and utilized for the development of 487 novel EST-derived functional markers which included 125 EST-SSRs, 151 intron targeted primers (ITPs), 109 expressed sequence tag polymorphisms (ESTPs), and 102 single nucleotide polymorphisms (SNPs). Whereas EST-SSRs, ITPs, and ESTPs were developed by in silico analysis of the developed EST sequences, SNPs were identified by allele resequencing and their genotyping was performed using the Illumina GoldenGate Assay. Parental polymorphism was analyzed between C. arietinum ICC4958 and C. reticulatum PI489777, parents of the reference chickpea mapping population, using a total of 872 markers: 487 new gene-based markers developed in this study along with 385 previously published markers, of which 318 (36.5%) were found to be polymorphic and were used for genotyping. The genotypic data were integrated with the previously published data of 108 markers and an advanced linkage map was generated that contained 406 loci distributed on eight linkage groups that spanned 1,497.7 cM. The average marker density was 3.68 cM and the average number of markers per LG was 50.8. Among the mapped markers, 303 new genomic locations were defined that included 177 gene-based and 126 gSSRs (genomic SSRs) thereby producing the most advanced gene-rich map of chickpea solely based on co-dominant markers.  相似文献   
110.
Dystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins. ER stress subsequently leads to sensory neurodegeneration through induction of a proapoptotic caspase cascade. dt sensory neurons display neurodegenerative pathologies, including Ca(2+) dyshomeostasis, unfolded protein response (UPR) induction, caspase activation, and apoptosis. Isoform-specific loss-of-function analysis attributes these neurodegenerative pathologies to specific loss of dystonin-a2. Inhibition of either UPR or caspase signaling promotes the viability of cells deficient in dystonin. This study provides insight into the mechanism of dt neuropathology and proposes a role for dystonin-a2 as a mediator of normal ER structure and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号