全文获取类型
收费全文 | 70篇 |
免费 | 3篇 |
国内免费 | 7篇 |
专业分类
80篇 |
出版年
2021年 | 1篇 |
2020年 | 3篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2016年 | 1篇 |
2015年 | 4篇 |
2014年 | 7篇 |
2013年 | 5篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 3篇 |
2009年 | 4篇 |
2008年 | 5篇 |
2007年 | 2篇 |
2006年 | 4篇 |
2005年 | 1篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 6篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1994年 | 1篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1977年 | 1篇 |
1974年 | 2篇 |
排序方式: 共有80条查询结果,搜索用时 15 毫秒
11.
12.
COLIN M. SHARPLES JOHN E. FA DIANA J. BELL 《Zoological Journal of the Linnean Society》1996,117(2):141-158
Craniometric data of nine characters from 260 skulls of Oryctolagus cuniculus from western Europe and northern Africa were gathered to examine phenotypic variation in size, using both univariate and multivariate analyses. Although animals from the northern part of Europe were found to be larger than those from southern Europe, variation in size occurred in a continuous cline. Skull size was positively correlated with latitude and negatively correlated with ambient temperature. On the basis of skull morphology, there is no evidence for separation of O. cuniculus into the two or more subspecies commonly described. Further data, particularly from genetic material, are required to clarify the taxonomic status of the rabbit in Europe. 相似文献
13.
对多种生物薄样品和标样进行电子探针X射线能谱显微定量分析,分别以电子束轰击后样品的O Kα峰计数和介于4.2-6.2keV区间的连续X-射线计数变化监测质量损失,结果显示样品O Kα峰计数减少幅度大于连续X-射线计数减少幅度,在相同的分析条件下,各样品质量损失程度不相同(P<0.05)。培养肝癌细胞冷冻干燥超薄切片、明胶冷冻干燥超薄切片、BSA薄膜、氨基塑料超薄切片、红细胞冷冻干燥超薄切片和卵黄高磷蛋白薄膜样品的质量损失分别为33%、28%、26%、18%、13%和13%,以上结果提示:以O Kα峰计数的减少监测样品的质量损失较敏感,在进行生物薄试样定量EPMA时应对各样品的质量损失进行相应校正。 相似文献
14.
15.
Sofie De Cooman Nathalie De Mey Bram BC Dewulf Rik Carette Thierry Deloof Maurice Sosnowski Andre M De Wolf Jan FA Hendrickx 《BMC anesthesiology》2008,8(1):1-6
Background
Current analgesics have drawbacks such as delays in acquisition, lag-times for effect, and side effects. We recently presented a preliminary report of a new analgesic method involving a two-minute sciatic nerve press, which resulted in immediate short-term relief of pain associated with dental and renal diseases. The present study investigated whether this technique was effective for pain associated with other disease types, and whether the relief was effective for up to one hour.Methods
This randomized, placebo-controlled, parallel-group trial was conducted in four hospitals in Anhui Province, China. Patients with pain were sequentially recruited by participating physicians during clinic visits, and 135 patients aged 15 – 80 years were enrolled. Dental disease patients included those with acute pulpitis and periapical abscesses. Renal disease patients included those with kidney infections and/or stones. Tumor patients included those with nose, breast, stomach and liver cancers, while Emergency Room patients had various pathologies. Patients were randomly assigned to receive a "sciatic nerve press" in which pressure was applied simultaneously to the sciatic nerves at the back of both thighs, or a "placebo press" in which pressure was applied to a parallel region on the front of the thighs. Each fist applied a pressure of 11 – 20 kg for 2 minutes. Patients rated their level of pain before and after the procedure.Results
The "sciatic nerve press" produced immediate relief of pain in all patient groups. Emergency patients reported a 43.5% reduction in pain (p < 0.001). Significant pain relief for dental, renal and tumor patients lasted for 60 minutes (p < 0.001). The peak pain relief occurred at the 10 – 20th minutes, and the relief decreased 47% by the 60th minutes.Conclusion
Two minutes of pressure on both sciatic nerves produced immediate significant short-term conduction analgesia. This technique is a convenient, safe and powerful method for the short-term treatment of clinical pain associated with a diverse range of pathologies.Trial registration
Current Controlled Trials ACTRN012606000439549 相似文献16.
Hydrotropism, the differential growth of plant roots directed by a moisture gradient, is a long recognized, but not well-understood plant behavior. Hydrotropism has been characterized in the model plant Arabidopsis. Previously, it was postulated that roots subjected to water stress are capable of undergo water-directed tropic growth independent of the gravity vector because of the loss of the starch granules in root cap columella cells and hence the loss of the early steps in gravitropic signaling. We have recently proposed that starch degradation in these cells during hydrostimulation sustain osmotic stress and root growth for carrying out hydrotropism instead of reducing gravity responsiveness. In addition, we also proposed that abscisic acid (ABA) and water deficit are critical regulators of root gravitropism and hydrotropism, and thus mediate the interacting mechanism between these two tropisms. Our conclusions are based upon experiments performed with the no hydrotropic response (nhr1) mutant of Arabidopsis, which lacks a hydrotropic response and shows a stronger gravitropic response than that of wild type (WT) in a medium with an osmotic gradient.Key words: starch, water deficit, auxin, abscisic acid, gravitropism, hydrotropismRoots of land plants sense and respond to different stimuli, some of which are fixed in direction and intensity (i.e., gravity) while other vary in time, space, direction and intensity (i.e., obstacles and moisture gradients). Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. However, since gravity is an omnipresent accompaniment of Earthly life and many living process have evolved with it as a background constant, it is not surprising that root hydrotropism interacts with gravitropism.1 The hydrotropic response in Arabidopsis, compare with other plants such as pea and cucumber2,3 is readily observed even in the presence of gravity.4,5 When Arabidopsis roots are subjected to a water gradient, such that the source of water is placed 180° opposed to the gravity vector, the roots will grow upwards, displaying positive hydrotropism. Therefore, it has been feasible to isolate so far two Arabidopsis mutants affected in their hydrotropic response.5,6 Analysis of these mutants reveals new insights of the mechanism of hydrotropism. For one hand, the no hydrotropic response (nhr1) mutant lacks a hydrotropic response, and shows a stronger gravitropic response than that of wt and a modified wavy growth response in a medium with an osmotic gradient.5,7 On the other hand, the mizu-kussei1 (miz1) mutant did not exhibit hydrotropism and showed regular gravitropism.6 Hence, the root hydrotropic response is both linked and unlinked from the gravitropic one. Nonetheless, miz1 roots also showed a reduced phototropism and a modified wavy growth response. This indicates that both MIZ1 and NHR1 are not exclusive components of the mechanism for hydrotropism and supports the notion that the root cap has assessment mechanisms that integrate many different environmental influences to produce a final integrated response.8 Thus, the physiological phenomena distinctively displayed by roots in order to forage resources from the environment are the result of integrated responses that resulted from many environmental influences sensed in the root cap.In the course of studying how gravity and water availability affected the perception and assessment of each other in root cap cells that generated the final root tropic response, we found that ABA is a critical regulator of the signal transduction mechanism that integrated these two-root tropisms.7 For this, we analyzed the long-term hydrotropic response of Arabidopsis roots in an osmotic gradient system. ABA, locally applied to seeds or root tips of nhr1, significantly increased root downward growth in a medium with an osmotic gradient (root length of nhr1 seedlings grown in this medium were on average 12.5 mm and plus 10 µM ABA were 25.1 mm). On the other hand, WT roots germinated and treated locally with ABA in this system were strongly gravitropic, albeit they had almost no starch in amyloplasts of root cap columella cells. Hydrotropically stimulated nhr1 roots, with or without ABA, maintained starch in amyloplastas, as opposed to those of WT. Therefore, the near-absence (WT) or abundant presence (nhr1) of starch granules does not affect the extent of downward gravitropism of roots in an osmotic gradient medium. Starch degradation in the wt might participate in osmoregulation by which root cells maintain turgor and consequently carry out hydrotropism, instead of reducing gravity responsiveness. In fact, it was just recently published that salt-induced rapid degradation of starch in amyloplasts is not likely the main reason for a negative gravitropic response seen under salt stress, because sos mutant roots of Arabidopsis showed negative gravitropic growth without any apparent rapid digestion of starch granules.9 Additionally, the stems of overwintering tubers of Potamogeton pectinatus are capable of elongating much faster in the absence than in the presence of oxygen for up to 14 days and its stems has an enhanced capacity for gravitropic movements in completely anoxic conditions.10 These authors hypothesized that ABA and starch degradation in the starchy tuber sustained stem cell elongation and cell division as well as differential growth required for the gravitropic response in these aquatic plants. These data taken together suggest that in conditions of anoxia, or water stress, ABA and degradation of starch play a critical role in the ability to survive relatively prolonged periods of unfavorable growth conditions. These players are critical when water or minerals are scarce since they regulate the enhancement of root downward growth. However, since roots can trail humidity gradients in soil, they can modulate their branching patterns (architecture) and thus respond to hydrotropism once a water-rich patch is found. Then the response of plants to gravity is principally one of nutrition (shoots to light, roots to mineral and water) and consequently must be regulated according to the long- and short-term environmental variables that occur during the development of the plant.Differential growth that occurs during the gravitropic and phototropic response has been explained according to the Cholodny-Went hypothesis, which states that the lateral transport of auxin across stimulated plant tissues is responsible for the curvature response.11 Analysis of hydrotropism in some Arabidopsis agravitropic auxin transport mutants has demonstrated that these mutations do not influence their hydrotropic response.4 Furthermore, current pharmacological studies using inhibitors also indicated that both auxin influx and efflux are not required for hydrotropic response whereas auxin response is necessary for it.12 These authors suggested a novel mechanism for auxin in root hydrotropism. Here, we analyzed whether asymmetric auxin distribution takes place across hydrotropically-stimulated roots using transgenic plants carrying a responsive auxin promoter (DR5) driving the expression of β-glucuronidase (GUS) or green fluorescent protein (GFP)13,14 in wt and nhr1 backgrounds. Wt and nhr1 roots hydrotropically stimulated in a system with air moisture gradient5 showed no asymmetric expression of the DR5:: GUS or DR5::GFP (Fig. 1A and B). Nonetheless, nhr1 roots showed a substantial decrease in the signal driven by the DR5::GUS and GFP reporters in humidity saturated conditions (Fig. 1A, part b and B, part b), which might indicate that auxin-induced gene expression in the root cap was inhibited. It remains to be determined the significance of this inhibition in the no hydrotropic response phenotype displayed by nhr1 roots. Determination of the DR5::GUS expression in wt and nhr1 roots growing in an osmotic gradient medium for testing long-term hydrotropism revealed that the GUS signal was to some extent diminished in both wt or in nhr1 roots (Fig. 2C and D) compared to those roots growing in normal medium (Fig. 2A and B). An inhibitor of auxin response reduced hydrotropism,12 and also inhibited auxin-dependent DR5::GUS expression.15 However, a decrease of DR5::GUS in wt root tips was not an impediment for developing an hydrotropic response. On the other hand, nhr1 roots also showed a decrease of DR5::GUS expression (Fig. 2B and D) and a complete absence of DR5::GFP (data not shown), which did not influence the extent of downward root gravitropism in water deficit conditions. Therefore, it is difficult to assign a role of auxin-induce gene expression in hydrotropism and further studies are required in order to unravel this issue. Furthermore, it needs to be resolved whether these expression studies oppose the idea that gradients in auxin precede differential growth in response to humidity gradients.Open in a separate windowFigure 1DR5:: GUS (A) and DR5::GFP (B) activity in the wild type NHR1 and nhr1 backgrounds. (A) Root tips hydrostimulated in a system with air moisture gradient (C and D) or grown in a saturated water conditions (A and B) stained with 1 mM 5-bromo-4-chloro-3-indolyl-β-d-glucuronic (X-Gluc) acid buffer under the same conditions for 80 min. (B) Root tips hydrostimulated as in (A) (C and D) or grown in a saturated water conditions (A and B) whose green fluorescent signal was visualized by confocal microscopy. Shown are images selected from at least 45 representative root tips. Bar = 29 µm.Open in a separate windowFigure 2Expression of DR5::GUS in wild type NHR1 and nhr1 backgrounds. Roots were hydrotropically stimulated for 8 days in a medium with an osmotic gradient (C and D) or grown in normal medium (A and B) and stained with X-Gluc acid buffer under the same conditions for 80 min. Shown are images selected from at least 50 representative root tips. Bar = 25 µm.Our studies7 revealed that ABA is a critical regulator of both root gravitropism and hydrotropism in water deficit conditions, and that the role of auxin under these conditions seems to differ from those observed in several studies thus far published on gravitropism made under well-water conditions. The molecular characterization of NHR1 and from other nhr-like mutants already isolated in our lab will clarify the mechanisms involved in this fascinating tropism.16 相似文献
17.
18.
The asexual nature of the first cortical reorganization of conjugation in Stylonychia was analyzed by comparing the effect of amputation performed at different stages of early conjugation to that performed on vegetative cells at different stages of the cell cycle. Amputation of vegetative cells delineated a point of commitment to binary fission at 0.51–0.57 of the cell cycle. Cells amputated before this point were induced to undergo the regenerative mode of asexual development, but those amputated after this point continued with binary fission. In parallel, during conjugation a similar commitment was made around the time of formation of tight mating-pairs: early conjugants amputated around this time might undergo regeneration, and those operated on after this stage continued with the first cortical reorganization as in typical conjugants. The two mates of a pair might differ in their response to amputation, suggesting that the timing of commitment to the first cortical reorganization is not related to the events of conjugation, but rather is individually determined in the vegetative cycle of the cells before they pair up in mating. These observations provide support for the notion that the first cortical reorganization of conjugants is homologous to the asexual mode of cortical development in dividers, according to the theory of developmental heterochrony in the sexual reproduction of hypotrichs. The timing of commitment to the first cortical reorganization was found to temporally correlate with the entrance of the micronuclei into meiosis. Since the first cortical reorganization can proceed without the micronucleus, this raises the possibility that initiation of micronuclear meiosis is closely coupled with, and may be determined by, the commitment to the first cortical reorganization. 相似文献
20.
A correlation between BCL-2 modifying factor,p53 and livin gene expressions in cancer colon patients
Eman AE. Badr Mohamed FA. Assar Abdel Monem A. Eltorgoman Azza Zaghlol Labeeb Gehad A. Breaka Enas A. Elkhouly 《Biochemistry and Biophysics Reports》2020
Accumulating evidence has revealed that livin gene and BCL-2 modifying factor (BMF) gene are closely associated with the initiation and progression of colon carcinoma by activating or suppressing multiple malignant processes. Those genes that can detect colon - cancer are a promising approach for cancer screening and diagnosis. This study aimed to evaluate correlation between livin, BMF and p53 genes expression in colon cancer tissues of patients included in the study, and their relationship with clinicopathological features and survival outcome in those patients. In this study, 50 pathologically diagnosed early cancer colon patients included and their tissue biopsy with 50 matched adjacent normal tissue, and 50 adenoma tissue specimens were analyzed for livin gene and BMF gene expressions using real time PCR. The relationship of those genes expressions with clinicopathological features, tumor markers, Time to Progression and overall survival for those patients were correlated in cancer colon group. In this study, there was a significant a reciprocal relationship between over expression of livin gene and down regulation of BMF and p53 genes in colon cancer cells. Livin mRNA was significantly higher, while BMF and p53 mRNA were significantly lower in colorectal cancer tissue compared to benign and normal colon tissue specimens (P < 0.001), however, this finding was absent between colon adenomas and normal mucosa. There was a significant association between up regulation of livin and down regulation of BMF and p53 expressions with more aggressive tumor (advanced TNM stage), rapid progression with metastasis and decreased overall survival in cancer colon patients, hence these genes can serve as significant prognostic markers of poor outcome in colon cancer patients. This work highlights the role of livin, BMF and p53 genes in colorectal tumorigenesis and the applicability of using those genes as a diagnostic and prognostic markers in patients with colon carcinoma and as a good target for cancer colon treatment in the future. 相似文献