首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   14篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有97条查询结果,搜索用时 296 毫秒
71.
This study focuses on unravelling the carbon and redox metabolism of a previously developed glycerol-overproducing Saccharomyces cerevisiae strain with deletions in the structural genes encoding triosephosphate isomerase (TPI1), the external mitochondrial NADH dehydrogenases (NDE1 and NDE2) and the respiratory chain-linked glycerol-3-phosphate dehydrogenase (GUT2). Two methods were used for analysis of metabolic fluxes: metabolite balancing and (13)C-labelling-based metabolic flux analysis. The isotopic enrichment of intracellular primary metabolites was measured both directly (liquid chromatography-MS) and indirectly through proteinogenic amino acids (nuclear magnetic resonance and gas chromatography-MS). Because flux sensitivity around several important metabolic nodes proved to be dependent on the applied technique, the combination of the three (13)C quantification techniques generated the most accurate overall flux pattern. When combined, the measured conversion rates and (13)C-labelling data provided evidence that a combination of assimilatory metabolism and pentose phosphate pathway activity diverted some of the carbon away from glycerol formation. Metabolite balancing indicated that this results in excess cytosolic NADH, suggesting the presence of a cytosolic NADH sink in addition to those that were deleted. The exchange flux of four-carbon dicarboxylic acids across the mitochondrial membrane, as measured by the (13)C-labelling data, supports a possible role of a malate/aspartate or malate/oxaloacetate redox shuttle in the transfer of these redox equivalents from the cytosol to the mitochondrial matrix.  相似文献   
72.
Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.  相似文献   
73.
74.
The effect of temperature on the conformation of a histone (H3.1) is studied by a coarse-grained Monte Carlo simulation based on three knowledge-based contact potentials (MJ, BT, BFKV). Despite unique energy and mobility profiles of its residues, the histone H3.1 undergoes a systematic (possibly continuous) structural transition from a random coil to a globular conformation on reducing the temperature. The range over which such a systematic response in variation of the radius of gyration (Rg) with the temperature (T) occurs, however, depends on the potential, i.e. ΔTMJ ≈ 0.013–0.020, ΔTBT ≈ 0.018–0.026, and ΔTBFKV ≈ 0.006–0.013 (in reduced unit). Unlike MJ and BT potentials, results from the BFKV potential show an anomaly where the magnitude of Rg decreases on raising the temperature in a range ΔTA ≈ 0.015–0.018 before reaching its steady-state random coil configuration. Scaling of the structure factor, S(q) ∝ q−1/ν, with the wave vector, q = 2π/λ, and the wavelength, λ, reveals a systematic change in the effective dimension (De∼1/ν) of the histone with all potentials (MJ, BT, BFKV): De∼3 in the globular structure with De∼2 for the random coil. Reproducibility of the general yet unique (monotonic) structural transition of the protein H3.1 with the temperature (in contrast to non-monotonic structural response of a similar but different protein H2AX) with three interaction sets shows that the knowledge-based contact potential is viable tool to investigate structural response of proteins. Caution should be exercise with the quantitative comparisons due to differences in transition regimes with these interactions.  相似文献   
75.
Temperature effect on microalgae: a crucial factor for outdoor production   总被引:2,自引:0,他引:2  
High rate outdoor production units of microalgae can undergo temperature fluctuations. Seasonal temperature variations as well as more rapid daily fluctuations are liable to modify the growth conditions of microalgae and hence affect production efficiency. The effect of elevated temperatures, above optimal growth temperatures, on growth is seldom reported in literature, but often described as more deleterious than low temperatures. Depending on the species, different strategies are deployed to counteract the effect of above optimal temperatures such as energy re-balancing and cell shrinking. Moreover, long term adaptation of certain species over generation cycles has also been proven efficient to increase optimal temperatures. Physical models coupled to biological kinetics are able to predict the evolution of temperature in the growth media and its effect on the growth rate, highlighting the downstream drastic economic and environmental impacts. Regarding the relative elasticity of microalgae towards temperature issues, cell mortality can depend on species or adapted species and in certain cases can be attenuated. These elements can complement existing models and help visualize the effective impacts of temperature on outdoor cultures.  相似文献   
76.
77.
78.
Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Prolonged hyperglycemia stimulates inflammatory pathway characterized by the release of some cytokines leading to the impairment of blood retinal barrier (BRB). NAP exerts a protective effect in various eye diseases, including DR. So far, the role of NAP in the modulation of inflammatory event during early phase of this pathology has not been investigated yet. In the current study, we have studied the retinal protective effect of NAP, injected into the eye, in diabetic rats. NAP treatment exerts a dual effect downregulating interleukin (IL)-1β and its related receptors and upregulating IL-1Ra expression. We have also tested the role of this peptide in human retinal epithelial cells (ARPE19) cultured on a semipermeable support and exposed to hyperglycemic–inflammatory insult, representing a in vitro model of diabetic macular edema, a clinical manifestation of DR. The results have shown that NAP prevents outer BRB impairment by upregulating the tight junctions. In conclusion, deepened characterization of NAP action mechanism on hyperglycemic–inflammatory damage may be useful to develop a new strategy to prevent retinal damage during DR.  相似文献   
79.
Coupling an anaerobic digester to a microalgal culture has received increasing attention as an alternative process for combined bioenergy production and depollution. In this article, a dynamic model for anaerobic digestion of microalgae is developed with the aim of improving the management of such a coupled system. This model describes the dynamics of inorganic nitrogen and volatile fatty acids since both can lead to inhibition and therefore process instability. Three reactions are considered: Two hydrolysis–acidogenesis steps in parallel for sugars/lipids and for proteins, followed by a methanogenesis step. The proposed model accurately reproduces experimental data for anaerobic digestion of the freshwater microalgae Chlorella vulgaris with an organic loading rate of 1 gCOD L?1 d?1. In particular, the three‐reaction pathway allows to adequately represent the observed decoupling between biogas production and nitrogen release. The reduced complexity of this model makes it suitable for developing advanced, model‐based control and monitoring strategies. Biotechnol. Bioeng. 2012; 109:415–425. © 2011 Wiley Periodicals, Inc.  相似文献   
80.
Hydrogenase-negative (Hup-) mutants of Azorhizobium caulinodans ORS571 were isolated by means of Tn5 mutagenesis. The colony test used for screening for Hup- strains was based on the absence of reduction of triphenyltetrazolium chloride with hydrogen. Suspensions from cultures of the mutant strains grown under derepressing conditions did not use hydrogen with methylene blue or oxygen as the hydrogen acceptor. The mutants were shown to carry single Tn5 insertions at different locations in the A. caulinodans genome. Molar growth yields (corrected for poly--hydroxybutyrate formation) in chemostat cultures of the mutants were similar to those of the wild type. Molar growth yields of the mutants were not increased by passing additional hydrogen through chemostat cultures, which is in agreement with the hydrogenase-negative phenotype of the mutants. H2/N2 ratios (mol H2 formed per mol N2 fixed) were calculated from the hydrogen content of the effluent gas and the N-content of the bacterial dry weight. Low H2/N2 ratios (between 1.2 and 1.9) were found in both energy-limited (oxygen or succinate) cultures and in cultures limited by the supply of an anabolic substrate (Mg2+). ATP/2e values (mol ATP used at the transport of 2e to nitrogen or H+) were calculated from the H2/N2 ratios and the molar growth yields of nitrogen-fixing and ammonia-assimilating cultures. ATP/2e values were between 7 and 11. It was concluded that the calculated ATP/2e values comprise not only 4 mol ATP used at the transport of 2e through nitrogenase but also energy equivalents needed for reversed electron flow from NADH to the low-potential hydrogen donor used by nitrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号