首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2505篇
  免费   143篇
  2648篇
  2024年   5篇
  2023年   22篇
  2022年   44篇
  2021年   83篇
  2020年   66篇
  2019年   57篇
  2018年   92篇
  2017年   48篇
  2016年   92篇
  2015年   155篇
  2014年   170篇
  2013年   203篇
  2012年   261篇
  2011年   227篇
  2010年   140篇
  2009年   139篇
  2008年   135篇
  2007年   140篇
  2006年   122篇
  2005年   114篇
  2004年   96篇
  2003年   82篇
  2002年   62篇
  2001年   9篇
  2000年   10篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   9篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1952年   1篇
排序方式: 共有2648条查询结果,搜索用时 15 毫秒
11.
Adolescence is marked by intensive growth and development. When pregnancy occurs during this period of the mother’s growth, there is an increase in her nutritional needs. The aim of this study was to determine the levels of calcium, iron, copper, and zinc in maternal plasma, the placenta, and in the cord plasma of pregnant teenagers and adults. A total of 80 sets of maternal plasma, placentas, and cord plasma (40 from teenagers and 40 from adults) were analyzed using synchrotron radiation total reflection X-ray fluorescence. The levels of calcium, copper, and zinc in the maternal and cord plasma from teenagers were not significantly different than those from adults. Iron levels in the teenagers maternal and cord plasma were higher than in the adults. All of the minerals analyzed were present at higher levels in the placentas from adults than those from teenagers. However, the low quantities of placental calcium, iron, copper, and zinc in the teenagers do not compromise the levels of these minerals in the cord plasma. Future research regarding the placental transport of these minerals is recommended to investigate the efficiency of mechanisms of transfer of these minerals in pregnant teenagers.  相似文献   
12.

Background

The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days).

Results

Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism.

Conclusions

Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-758) contains supplementary material, which is available to authorized users.  相似文献   
13.
Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012). Phylogenetic analysis of the north‐east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, Idoteidae). —Zoologica Scripta, 41, 386–399. The marine isopod genus Stenosoma is widespread in the northern hemisphere. However, 12 of its 14 known species are found within the Mediterranean basin and adjacent regions of the north‐east Atlantic and the Black Sea. Such a high level of diversity confined to a limited region of a much larger circumglobal distribution suggests that the Mediterranean region may have played a crucial role in the evolutionary history of this genus. In the present work, the phylogeny of the genus Stenosoma was investigated on the basis of DNA sequencing data from one nuclear (28SrRNA) and two mitochondrial (COI, ND4) gene fragments obtained for nine of 12 Atlantic–Mediterranean species. Divergence time estimates point to a Tethyan origin of Stenosoma and suggest that the speciation events from which stem most of the extant species took place well before the Messinian Salinity Crisis. Stenosoma spinosum and Stenosoma appendiculatum are the only exceptions, as they apparently arose within the Mediterranean during the Pleistocene. Phylogenetic reconstruction agrees with current taxonomic status of most species. However, Stenosoma capito clustered in two distinct and well‐supported clades, one composed of eastern Mediterranean and Black Sea specimens and the other by western Mediterranean and Atlantic ones. Such polyphyly suggests the existence of a previously unrecognized species, Stenosoma sp., which so far has been confounded with S. capito.  相似文献   
14.
Williams-Beuren syndrome (WBS), caused by a heterozygous deletion at 7q11.23, represents a model for studying hypertension, the leading risk factor for mortality worldwide, in a genetically determined disorder. Haploinsufficiency at the elastin gene is known to lead to the vascular stenoses in WBS and is also thought to predispose to hypertension, present in approximately 50% of patients. Detailed clinical and molecular characterization of 96 patients with WBS was performed to explore clinical-molecular correlations. Deletion breakpoints were precisely defined and were found to result in variability at two genes, NCF1 and GTF2IRD2. Hypertension was significantly less prevalent in patients with WBS who had the deletion that included NCF1 (P=.02), a gene coding for the p47(phox) subunit of the NADPH oxidase. Decreased p47(phox) protein levels, decreased superoxide anion production, and lower protein nitrotyrosination were all observed in cell lines from patients hemizygous at NCF1. Our results indicate that the loss of a functional copy of NCF1 protects a proportion of patients with WBS against hypertension, likely through a lifelong reduced angiotensin II-mediated oxidative stress. Therefore, antioxidant therapy that reduces NADPH oxidase activity might have a potential benefit in identifiable patients with WBS in whom serious complications related to hypertension have been reported, as well as in forms of essential hypertension mediated by a similar pathogenic mechanism.  相似文献   
15.
16.
There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.  相似文献   
17.
We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n=38) and DCM (n=27) patients, undergoing heart transplantation and control donors (n=6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p<0.05) and DCM (141%, p<0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p<0.05) and DCM (1.70-fold, p<0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p<0.0001), and it was increased in pathological hearts (p<0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p<0.05 and 131%, p<0.001) and DCM (56%, p<0.01 and 69%, p<0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p<0.001), perinucleolar chromatin (p<0.01) and dense fibrillar components (p<0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p<0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.  相似文献   
18.
The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax, Vcmax), leaf respiration (Rleaf), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax, Vcmax, Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts.  相似文献   
19.
Premature truncation alleles in the ALMS1 gene are a frequent cause of human Alstr?m syndrome. Alstr?m syndrome is a rare disorder characterized by early obesity and sensory impairment, symptoms shared with other genetic diseases affecting proteins of the primary cilium. ALMS1 localizes to centrosomes and ciliary basal bodies, but truncation mutations in Alms1/ALMS1 do not preclude formation of cilia. Here, we show that in vitro knockdown of Alms1 in mice causes stunted cilia on kidney epithelial cells and prevents these cells from increasing calcium influx in response to mechanical stimuli. The stunted-cilium phenotype can be rescued with a 5' fragment of the Alms1 cDNA, which resembles disease-associated alleles. In a mouse model of Alstr?m syndrome, Alms1 protein can be stably expressed from the mutant allele and is required for cilia formation in primary cells. Aged mice developed specific loss of cilia from the kidney proximal tubules, which is associated with foci of apoptosis or proliferation. As renal failure is a common cause of mortality in Alstr?m syndrome patients, we conclude that this disease should be considered as a further example of the class of renal ciliopathies: wild-type or mutant alleles of the Alstr?m syndrome gene can support normal kidney ciliogenesis in vitro and in vivo, but mutant alleles are associated with age-dependent loss of kidney primary cilia.  相似文献   
20.
Studies have shown an intimate relationship between cholesterol and retinal diseases; we examined the effects of cholesterol oxides on cultured cells. Using the rat retinal precursor cell line R28 and the human RPE cell line ARPE-19, we investigated the potential cytotoxicity of cholesterol oxides. Cultured R28 and ARPE-19 cells were treated with either 25-hydroxycholesterol and 7-ketocholesterol (0–50 µg/ml). Cell viability was determined by the WST-1 colorimetric assay. Production of reactive oxygen intermediate (ROI) was assessed by a fluorescent probe–based assay (2,7-dichlorodihydrofluorescein diacetate [H2DCFDA]). To detect the presence of apoptosis, DNA fragmentation gel analysis and Hoescht nuclear staining were performed. Both cholesterol oxides tested were toxic in a time- and dose-dependent fashion to the two cell lines used in this study. Treatment of R28 cells with either 25-hydroxycholesterol or 7-ketocholesterol at a concentration of 25 µg/ml resulted in greater than 50% loss of cell viability after 24 h. ARPE-19 cells were slightly less affected, with a loss of cell viability of approximately 20% and 40% after 24 h-exposure of 25-hydroxycholesterol and 7-ketocholesterol, respectively. DNA fragmentation and chromatin condensation demonstrated apoptotic events occurring in 7-ketocholesterol–treated cells. The fluorescent assay for ROI production showed that after an hour of exposure to 7-ketocholesterol, R28 cells responded with increased levels of ROIs, whereas no immediate production of ROIs were detected with treated ARPE-19 cells. These in vitro findings provide evidence that cholesterol oxides can directly damage cultured retinal and RPE cells. The oxysterol-induced oxidative stress in these cells may be a factor in the pathology of retinal degenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号