首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2497篇
  免费   142篇
  2024年   3篇
  2023年   20篇
  2022年   39篇
  2021年   83篇
  2020年   66篇
  2019年   57篇
  2018年   92篇
  2017年   48篇
  2016年   92篇
  2015年   155篇
  2014年   170篇
  2013年   203篇
  2012年   261篇
  2011年   227篇
  2010年   140篇
  2009年   139篇
  2008年   135篇
  2007年   140篇
  2006年   122篇
  2005年   114篇
  2004年   96篇
  2003年   82篇
  2002年   62篇
  2001年   9篇
  2000年   10篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   9篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1952年   1篇
排序方式: 共有2639条查询结果,搜索用时 812 毫秒
971.
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm.  相似文献   
972.
Nimotuzumab (TheraCIM, CIMAher, h-R3, humanized anti-EGF-R antibody), monoclonal antibody (mAb) manufactured at the Center of Molecular Immunology (Havana, Cuba) is currently being tested in several clinical trials. Nimotuzumab has a single N-glycosylation site in the Fc-CH2 fragment but no N-glycosylation site in the Fab region. The current study reports the full characterization of the mAb N-glycosylation and the consistency observed in several production batches from a perfusion mode culturing system that lasted between 68 and 150 days. It confirms that the N-glycan structures of Nimotuzumab expressed in the NS0 murine myeloma cell line are of the murine type. They consist mainly of fucosylated G0, G1 and G2 oligosaccharides, which are normally found in the CH2 region of IgG. Other minor species found were high mannose and sialylated structures. A small portion of the glycans were sialylated (~12%) and the only type of sialic acid detected was N-glycolyl-sialic acid, α2,6-linked to Gal. No Galα1-3Gal moieties were detected.  相似文献   
973.
974.
Listeriolysin O (LLO) is a thiol-activated cytolysin secreted by Listeria monocytogenes . LLO and phosphatidylinositol phospholipase C are two essential virulence factors, which this bacterium needs to escape from the phagosomal compartment to the cytoplasm. Cathepsin-D specifically cleaves LLO, between the Trp-491 (tryptophan amino acid in three letter nomenclature) and Trp-492 residues of the conserved undecapeptide sequence, ECTGLAWEWWR, in the domain 4 of LLO (D4). Moreover, these residues also correspond to the phagosomal-binding epitope. Cathepsin-D had no effect on phosphatidylinositol phospholipase C. We have observed that cathepsin-D cleaved the related cholesterol-dependent cytolysin pneumolysin at the same undecapeptide sequence between Trp-435 and Trp-436 residues. These studies also revealed an additional cathepsin-D cleavage site in the pneumolysin D4 domain localized in the 361-GDLLLD-366 sequence. These differences might confer a pathogenic advantage to listeriolysin O, increasing its resistance to phagosomal cathepsin-D action by reducing the number of cleavages sites in the D4 domain. Using ΔLLO/W491A and ΔLLO/W492A bacterial mutants, we reveal that the Trp-491 residue has an important role linked to cathepsin-D in Listeria innate immunity.  相似文献   
975.
Trait loci analysis, a classic procedure in quantitative (quantitative trait loci, QTL) and qualitative (Mendelian trait loci, MTL) genetics, continues to be the most important approach in studies of gene labeling in Prunus species from the Rosaceae family. Since 2011, the number of published Prunus QTLs and MTLs has doubled. With increased genomic resources, such as whole genome sequences and high-density genotyping platforms, trait loci analysis can be more readily converted to markers that can be directly utilized in marker-assisted breeding. To provide this important resource to the community and to integrate it with other genomic, genetic, and breeding data, a global review of the QTLs and MTLs linked to agronomic traits in Prunus has been performed and the data made available in the Genome Database for Rosaceae. We describe detailed information on 760 main QTLs and MTLs linked to a total of 110 agronomic traits related to tree development, pest and disease resistance, flowering, ripening, and fruit and seed quality. Access to these trait loci enables the application of this information in the post-genomic era, characterized by the availability of a high-quality peach reference genome and new high-throughput DNA and RNA analysis technologies.  相似文献   
976.
BACKGROUND: Caspases are a family of aspartate-specific cysteine proteases that play an essential role in initiating and executing programmed cell death (PCD) in metazoans. Caspase-like activities have been shown to be required for the initiation of PCD in plants, but the genes encoding those activities have not been identified. VPEgamma, a cysteine protease, is induced during senescence, a form of PCD in plants, and is localized in precursor protease vesicles and vacuoles, compartments associated with PCD processes in plants. RESULTS: We show that VPEgamma binds in vivo to a general caspase inhibitor and to caspase-1-specific inhibitors, which block the activity of VPEgamma. A cysteine protease inhibitor, cystatin, accumulates to 20-fold higher levels in vpegamma mutants. Homologs of cystatin are known to suppress hypersensitive cell death in plant and animal systems. We also report that infection with an avirulent strain of Pseudomonas syringae results in an increase of caspase-1 activity, and this increase is partially suppressed in vpegamma mutants. Plants overexpressing VPEgamma exhibit a greater amount of ion leakage during infection with P. syringae, suggesting that VPEgamma may regulate cell death progression during plant-pathogen interaction. VPEgamma expression is induced after infection with P. syringae, Botrytis cinerea, and turnip mosaic virus, and knockout of VPEgamma results in increased susceptibility to these pathogens. CONCLUSIONS: We conclude that VPEgamma is a caspase-like enzyme that has been recruited in plants to regulate vacuole-mediated cell dismantling during cell death, a process that has significant influence in the outcome of a diverse set of plant-pathogen interactions.  相似文献   
977.
Particulate methane monooxygenase (pMMO) is a three-subunit integral membrane enzyme that catalyzes the oxidation of methane to methanol. Although pMMO is the predominant methane oxidation catalyst in nature, it has proved difficult to isolate, and most questions regarding its molecular structure, active site composition, chemical mechanism, and genetic regulation remain unanswered. Copper ions are believed to play a key role in both pMMO regulation and catalysis, and there is some evidence that the enzyme contains iron as well. A number of research groups have solubilized and purified or partially purified pMMO. These preparations have been characterized by biochemical and biophysical methods. In addition, aspects of methane monooxygenase gene regulation and copper accumulation in methanotrophs have been studied. This review summarizes for the first time the often controversial pMMO literature, focusing on recent progress and highlighting unresolved issues.  相似文献   
978.
Plumbagin is a naturally occurring naphthoquinone isolated from roots of Plumbago scandens. The plant was collected at the Campus of Funda??o Oswaldo Cruz, Rio de Janeiro, Brazil. P. scandens is used as a traditional medicine for the treatment of several diseases. The antimicrobial activity of plumbagin was evaluated using the macrodilution method. The compound exhibited relatively specific activity against bacteria and yeast. The minimum inhibitory concentration test showed the growth inhibiton of Staphylococcus aureus at a concentration of 1.56 g/ml and of Candida albicans at a concentration of 0.78 g/ml. These results suggest the naphthoquinone plumbagin as a promising antimicrobial agent.  相似文献   
979.
980.
Live Salmonella vaccines are limited in use by the inherent toxicity of the lipopolysaccharide. The waaN gene encodes a myristyl transferase required for the secondary acylation of lipid A in lipopolysaccharide. A waaN mutant exhibits reduced induction of the inflammatory cytokines associated with lipopolysaccharide toxicity. Here the characteristics of a Salmonella enterica serovar Typhimurium aroA waaN mutant (SK100) in vitro and in vivo compared with its parent aroA strain (SL3261) were described. Phenotypic analysis of purified lipopolysaccharide obtained from SK100 confirmed that the physical and biological activities of the lipopolysaccharide had been altered. Nevertheless both strains had similar patterns of colonization and persistence in mice and significantly the aroA waaN mutant was equally as effective as the parent at protecting against challenge with wild-type S. Typhimurium. Furthermore, a SK100 strain was constructed expressing both tetanus toxin fragment C and the circumsporozoite protein of a malaria parasite. In marked contrast to its isogenic parent, the new attenuated strain induces significantly enhanced immune responses against the circumsporozoite protein. The waaN mutation enhances the ability of this strain to elicit immune responses towards guest antigens. This study provides important insights into the development of safe and effective multivalent Salmonella vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号