首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3965篇
  免费   388篇
  2023年   22篇
  2022年   58篇
  2021年   118篇
  2020年   100篇
  2019年   94篇
  2018年   145篇
  2017年   90篇
  2016年   153篇
  2015年   236篇
  2014年   260篇
  2013年   289篇
  2012年   360篇
  2011年   309篇
  2010年   214篇
  2009年   195篇
  2008年   205篇
  2007年   209篇
  2006年   181篇
  2005年   177篇
  2004年   152篇
  2003年   123篇
  2002年   111篇
  2001年   45篇
  2000年   52篇
  1999年   45篇
  1998年   28篇
  1997年   27篇
  1996年   12篇
  1995年   18篇
  1994年   22篇
  1993年   32篇
  1992年   34篇
  1991年   25篇
  1990年   30篇
  1989年   12篇
  1988年   20篇
  1987年   10篇
  1986年   15篇
  1985年   10篇
  1984年   10篇
  1983年   13篇
  1982年   12篇
  1980年   10篇
  1979年   6篇
  1978年   10篇
  1975年   7篇
  1974年   7篇
  1973年   7篇
  1972年   6篇
  1971年   4篇
排序方式: 共有4353条查询结果,搜索用时 406 毫秒
151.
AimTo analyse the efficacy and toxicity of postprostatectomy SRT in patients with a BCR evaluated with mpMRI.BackgroundMultiparametric magnetic resonance imaging (mpMRI) has the ability to detect the site of pelvic recurrence in patients with biochemical recurrence (BCR) after radical prostatectomy (RP). However, we do not know the oncological outcomes of mpMRI-guided savage radiotherapy (SRT).ResultsLocal, lymph node, and pelvic bone recurrence was observed in 13, 4 and 2 patients, respectively. PSA levels were significantly lower in patients with negative mpMRI (0.4 ng/mL [0.4]) vs. positive mpMRI (2.2 ng/mL [4.1], p = 0.003). Median planning target volume doses in patients with visible vs. non-visible recurrences were 76 Gy vs. 70 Gy. Overall, mean follow-up was 41 months (6–81). Biochemical relapse-free survival (bRFS) at 3 years was 82.3% and 82.5%, respectively, for the negative and positive mpMRI groups (p = 0.800). Three-year rates of late grade ≥2 urinary and rectal toxicity were 14.8% and 1.9%, respectively; all but one patient recovered without sequelae.ConclusionSRT to the macroscopic recurrence identified by mpMRI is a feasible and well-tolerated option. In this study, there were no differences in bRFS between MRI-positive and MRI-negative patients, indicating effective targeting of MRI-positive lesions.  相似文献   
152.
Although several therapeutic approaches are available for wound and burn treatment and much progress has been made in this area, room for improvement still exists, driven by the urgent need of better strategies to accelerate wound healing and recovery, mostly for cases of severe burned patients. Bacterial cellulose (BC) is a biopolymer produced by bacteria with several advantages over vegetal cellulose, such as purity, high porosity, permeability to liquid and gases, elevated water uptake capacity and mechanical robustness. Besides its biocompatibility, BC can be modified in order to acquire antibacterial response and possible local drug delivery features. Due to its intrinsic versatility, BC is the perfect example of a biotechnological response to a clinical problem. In this review, we assess the BC main features and emphasis is given to a specific biomedical application: wound dressings. The production process and the physical–chemical properties that entitle this material to be used as wound dressing namely for burn healing are highlighted. An overview of the most common BC composites and their enhanced properties, in particular physical and biological, is provided, including the different production processes. A particular focus is given to the biochemistry and genetic manipulation of BC. A summary of the current marketed BC-based wound dressing products is presented, and finally, future perspectives for the usage of BC as wound dressing are foreseen.  相似文献   
153.
The cyanobacterium Microcystis aeruginosa causes most of the harmful toxic blooms in freshwater ecosystems. Some strains of M. aeruginosa tolerate low‐medium levels of salinity, and because salinization of freshwater aquatic systems is increasing worldwide it is relevant to know what adaptive mechanisms allow tolerance to salinity. The mechanisms involved in the adaptation of M. aeruginosa to salinity (acclimation vs. genetic adaptation) were tested by a fluctuation analysis design, and then the maximum capacity of adaptation to salinity was studied by a ratchet protocol experiment. Whereas a dose of 10 g NaCl L?1 completely inhibited the growth of M. aeruginosa, salinity‐resistant genetic variants, capable of tolerating up to 14 g NaCl L?1, were isolated in the fluctuation analysis experiment. The salinity‐resistant cells arose by spontaneous mutations at a rate of 7.3 × 10?7 mutants per cell division. We observed with the ratchet protocol that three independent culture populations of M. aeruginosa were able to adapt to up to 15.1 g L?1 of NaCl, suggesting that successive mutation‐selection processes can enhance the highest salinity level to which M. aeruginosa cells can initially adapt. We propose that increasing salinity in water reservoirs could lead to the selection of salinity‐resistant mutants of M. aeruginosa.  相似文献   
154.
155.
156.
157.
Chloride (Cl?) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water‐use efficiency (WUE). However, it is still unclear how Cl? could be beneficial, especially in comparison with nitrate (NO3?), an essential source of nitrogen that shares with Cl? similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl? specifically reduce stomatal conductance (gs) without a concomitant reduction in the net photosynthesis rate (AN). As stomata‐mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2, simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl?‐mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl? improves mesophyll diffusion conductance to CO2 (gm) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl? nutrition. This work identifies relevant and specific functions in which Cl? participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.  相似文献   
158.
Fine root decomposition constitutes a critical yet poorly understood flux of carbon and nutrients in terrestrial ecosystems. Here, we present the first large‐scale synthesis of species trait effects on the early stages of fine root decomposition at both global and local scales. Based on decomposition rates for 279 plant species across 105 studies and 176 sites, we found that mycorrhizal association and woodiness are the best categorical traits for predicting rates of fine root decomposition. Consistent positive effects of nitrogen and phosphorus concentrations and negative effects of lignin concentration emerged on decomposition rates within sites. Similar relationships were present across sites, along with positive effects of temperature and moisture. Calcium was not consistently related to decomposition rate at either scale. While the chemical drivers of fine root decomposition parallel those of leaf decomposition, our results indicate that the best plant functional groups for predicting fine root decomposition differ from those predicting leaf decomposition.  相似文献   
159.
Although numerous studies have been carried out on the impacts of oil spills on coral physiology, most have relied on laboratory assays. This scarcity is partly explained by the difficulty of reproducing realistic conditions in a laboratory setting or of performing experiments with toxic compounds in the field. Mesocosm systems provide the opportunity to carry out such studies with safe handling of contaminants while reproducing natural conditions required by living organisms. The mesocosm design is crucial and can lead to the development of innovative technologies to mitigate environmental impacts. Therefore, this study aimed to develop a mesocosm system for studies simulating oil spills with several key advantages, including true replication and the use of gravity to control flow‐through that reduces reliance on pumps that can clog thereby decreasing errors and costs. This adaptable system can be configured to (a) have continuous flow‐through; (b) operate as an open or closed system; (c) be fed by gravity; (d) have separate mesocosm sections that can be used for individual and simultaneous experiments; and (e) simulate the migration of oil from ocean oil spills to the nearby reefs. The mesocosm performance was assessed with two experiments using the hydrocoral Millepora alcicornis and different configurations to simulate two magnitudes of oil spills. With few exceptions, physical and chemical parameters remained stable within replicates and within treatments throughout the experiments. Physical and chemical parameters that expressed change during the experiment were still within the range of natural conditions observed in Brazilian marine environments. The photosynthetic potential (Fv/Fm) of the algae associated with M. alcicornis decreased in response to an 1% crude‐oil contamination, suggesting a successful delivery of the toxic contaminant to the targeted replicates. This mesocosm is customizable and adjustable for several types of experiments and proved to be effective for studies of oil spills.  相似文献   
160.
The milk production of dairy goats under various regimes of mother-young contact from day 4 post partum were studied during the first 2 months of lactation, together with the prolactin (PRL) and growth hormone (GH) responses to udder stimulation. In the control group, 13 goats and their kids were left in permanent contact and did not undergo milking. In two additional groups, goats were machine milked once a day in the morning (at 0800 h) and kids were allowed 10 hours (from 1000 to 2000 h; 10H group, n = 11) or 5 h (from 1000 to 2000 h; 5H group, n = 11) of mother-young interaction per day. In the last group (MO, n = 10), mothers were permanently separated from their kids on day 4 post partum and milked once a day. Milk production during a 24-h period at 37 days post partum performed by controlled nursing and weighing of the kids (groups with kids) or by two machine milking 12 h apart (milking only group) revealed a higher production in the three groups with some mother-young contact than in the MO group. Total milk collected by milking over the 2 months of the study did not differ between the three groups that underwent milking. Kid weights at 2 months were 3.4 to 4.8 kg. lighter in the groups that underwent milking than in the control group. Hormonal profiles were significantly affected by restricted mother-young contact, with highest pre-stimulation concentrations of PRL and GH in the 5H group. Restricting mother-young contact from the first week postpartum can permit an early collection of milk without major effects on kid growth, when compared with one daily milking in goats totally separated from their young.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号