首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   148篇
  国内免费   1篇
  2021年   9篇
  2018年   8篇
  2016年   14篇
  2015年   18篇
  2014年   22篇
  2013年   25篇
  2012年   34篇
  2011年   22篇
  2010年   24篇
  2009年   18篇
  2008年   15篇
  2007年   19篇
  2006年   16篇
  2005年   13篇
  2004年   15篇
  2003年   14篇
  2002年   15篇
  2001年   24篇
  2000年   18篇
  1999年   24篇
  1998年   25篇
  1997年   21篇
  1996年   13篇
  1995年   15篇
  1994年   10篇
  1993年   12篇
  1992年   17篇
  1991年   21篇
  1990年   21篇
  1989年   17篇
  1988年   18篇
  1987年   10篇
  1986年   16篇
  1985年   16篇
  1984年   11篇
  1983年   15篇
  1982年   13篇
  1981年   13篇
  1980年   10篇
  1979年   13篇
  1978年   14篇
  1977年   24篇
  1976年   20篇
  1975年   14篇
  1974年   9篇
  1973年   15篇
  1972年   13篇
  1971年   9篇
  1968年   13篇
  1966年   11篇
排序方式: 共有864条查询结果,搜索用时 46 毫秒
241.
Organic loading under a submerged fish cage in commercial operation has been quantified for the first time in the open ocean. Sediment traps out to 100 m sampled the loading continuously over the 15 months of a complete grow‐out cycle for cobia (Rachycentron canadum). Typically 4% or 5% of the feed arrived directly to the sediment, although this benthic percentage became much higher in the last two months of this study. Almost all the loading (90%) lands within 30 m of the cage mooring block. The loading consists of fragments of feed pellets that wash out from the mouths and gills of the fish. The fragments sink rapidly and almost vertically; they are not carried horizontally into large dilution volumes. Dispersal on the sediment surface is much more extensive than dispersal in the water. This study developed expeditious and cost‐effective techniques for sampling and analyzing organic loading, using a minimum of technological resources.  相似文献   
242.
Phosphorylation events play a crucial role in Raf activation. Phosphorylation of serines 259 and 621 in C-Raf and serines 364 and 728 in B-Raf has been suggested to be critical for association with 14-3-3 proteins. To study the functional consequences of Raf phosphorylations at these positions, we developed and characterized phosphospecific antibodies directed against 14-3-3 binding epitopes: a monoclonal phosphospecific antibody (6B4) directed against pS621 and a polyclonal antibody specific for B-Raf-pS364 epitope. Although 6B4 detected both C- and B-Raf in Western blots, it specifically recognizes the native form of C-Raf but not B-Raf. Contrary to B-Raf, a kinase-dead mutant of C-Raf was found to be only poorly phosphorylated in the Ser-621 position. Moreover, serine 259 to alanine mutation prevented the Ser-621 phosphorylation suggesting an interdependence between these two 14-3-3 binding domains. Direct C-Raf.14-3-3 binding studies with purified proteins combined with competition assays revealed that the 14-3-3 binding domain surrounding pS621 represents the high affinity binding site, whereas the pS259 epitope mediates lower affinity binding. Raf isozymes differ in their 14-3-3 association rates. The time course of endogenous C-Raf activation in mammalian cells by nerve growth factor (NGF) has been examined using both phosphospecific antibodies directed against 14-3-3 binding sites (6B4 and anti-pS259) as well as phosphospecific antibodies directed against the activation domain (anti-pS338 and anti-pY340/pY341). Time course of Ser-621 phosphorylation, in contrast to Ser-259 phosphorylation, exhibited unexpected pattern reaching maximal phosphorylation within 30 s of NGF stimulation. Phosphorylation of tyrosine 340/341 reached maximal levels subsequent to Ser-621 phosphorylation and was coincident with emergence of kinase activity. Taken together, we found substantial differences between C-Raf.14-3-3 binding epitopes pS259 and pS621 and visualized for the first time the sequence of the essential C-Raf phosphorylation events in mammalian cells in response to growth factor stimulation.  相似文献   
243.
The application of all-atom force fields (and explicit or implicit solvent models) to protein homology-modeling tasks such as side-chain and loop prediction remains challenging both because of the expense of the individual energy calculations and because of the difficulty of sampling the rugged all-atom energy surface. Here we address this challenge for the problem of loop prediction through the development of numerous new algorithms, with an emphasis on multiscale and hierarchical techniques. As a first step in evaluating the performance of our loop prediction algorithm, we have applied it to the problem of reconstructing loops in native structures; we also explicitly include crystal packing to provide a fair comparison with crystal structures. In brief, large numbers of loops are generated by using a dihedral angle-based buildup procedure followed by iterative cycles of clustering, side-chain optimization, and complete energy minimization of selected loop structures. We evaluate this method by using the largest test set yet used for validation of a loop prediction method, with a total of 833 loops ranging from 4 to 12 residues in length. Average/median backbone root-mean-square deviations (RMSDs) to the native structures (superimposing the body of the protein, not the loop itself) are 0.42/0.24 A for 5 residue loops, 1.00/0.44 A for 8 residue loops, and 2.47/1.83 A for 11 residue loops. Median RMSDs are substantially lower than the averages because of a small number of outliers; the causes of these failures are examined in some detail, and many can be attributed to errors in assignment of protonation states of titratable residues, omission of ligands from the simulation, and, in a few cases, probable errors in the experimentally determined structures. When these obvious problems in the data sets are filtered out, average RMSDs to the native structures improve to 0.43 A for 5 residue loops, 0.84 A for 8 residue loops, and 1.63 A for 11 residue loops. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, thus indicating that sampling rarely limits prediction accuracy. The overall results are, to our knowledge, the best reported to date, and we attribute this success to the combination of an accurate all-atom energy function, efficient methods for loop buildup and side-chain optimization, and, especially for the longer loops, the hierarchical refinement protocol.  相似文献   
244.
Serotonin uptake and metabolism was studied in ependymal primary cultures. Serotonin uptake was facilitated by two different systems, one of which was the neuronal serotonin transporter SERT, exhibiting a Vmax value of 3.8+/-0.1 pmol x min(-1) x (mg protein)(-1) and an apparent Michaelis-Menten constant of 0.41+/-0.03 microM. The main product of metabolism was 5-hydroxyindole acetic acid, which resulted from the action of monoamine oxidase A. This enzyme showed a maximal rate of 0.85+/-0.02 nmol x min(-1) x (mg protein)(-1) and a Michaelis-Menten constant of 78+/-5 microM. Ependymal cells were able to dispose of extracellular serotonin with initial rates of approximately 600 pmol x min(-1) x (mg protein)(-1) and of 4 pmol x min(-1) x (mg protein)(-1) when challenged with 500 microM and 1 microM extracellular serotonin, respectively. Ependymal cells are concluded to facilitate the "sink" action of the CSF by removing waste compounds upon passing of the fluid from the parenchymal extracellular space into the ventricular system.  相似文献   
245.
Membrane protein topology predictions can be markedly improved by the inclusion of even very limited experimental information. We have recently introduced an approach for the production of reliable topology models based on a combination of experimental determination of the location (cytoplasmic or periplasmic) of a protein's C terminus and topology prediction. Here, we show that determination of the location of a protein's C terminus, rather than some internal loop, is the best strategy for large-scale topology mapping studies. We further report experimentally based topology models for 31 Escherichia coli inner membrane proteins, using methodology suitable for genome-scale studies.  相似文献   
246.
The c-Jun N-terminal kinases (JNKs) (also known as stress-activated protein kinases or SAPKs), members of the mitogen-activated protein kinase (MAPK) family, regulate gene expression in response to a variety of physiological and unphysiological stimuli. Gene knockout experiments and the use of dominant interfering mutants have pointed to a role for JNKs in the processes of cell differentiation and survival as well as oncogenic transformation. Direct analysis of the transforming potential of JNKs has been hampered so far by the lack of constitutively active forms of these kinases. Recently, such mutants have become available by fusion of the MAPK with its direct upstream activator kinase. We have generated a constitutively active SAPK beta-MKK7 hybrid protein and, using this constitutively active kinase, we are able to demonstrate the transforming potential of activated JNK, which is weaker than that of classical oncogenes such as Ras or Raf. The inducible expression of SAPK beta-MKK7 caused morphological transformation of NIH 3T3 fibroblasts. Additionally, these cells formed small foci of transformed cells and grew anchorage-independent in soft agar. Furthermore, similar to oncogenic Ras and Raf, the expression of activated SAPK beta resulted in the disassembly of F-actin stress fibers. Our data suggest that constitutive JNK activation elicits major aspects of cellular transformation but is unable to induce the complete set of changes which are required to establish the fully transformed phenotype.  相似文献   
247.
Increasing evidence points to a role of the mitogenic Ras/Raf/MEK/ERK signaling cascade in regulation of human immunodeficiency virus type 1 (HIV-1) gene expression. Stimulation of elements of this pathway leads to transactivation of the HIV-1 promoter. In particular, the NF-κB motif in the HIV long terminal repeat (LTR) represents a Raf-responsive element in fibroblasts. Regulation of the Raf kinase in T cells differs from findings with a variety of cell lines that the catalytic domain of Raf (RafΔ26–303) shows no activity. In this study, we restored the activity of the kinase in T cells by fusing its catalytic domain to the CAAX motif (-Cx) of Ras, thus targeting the enzyme to the plasma membrane. Constitutive activity of Raf was demonstrated by phosphorylation of mitogen-activated protein kinase kinase (MEK) and endogenous mitogen-activated protein kinase 1/2 (ERK1/2) in A3.01 T cells transfected with RafΔ26–303-Cx. Membrane-targeted Raf also stimulates NF-κB, as judged by κB-dependent reporter assays and enhanced NF-κB p65 binding on band shift analysis. Moreover, we found that active Raf transactivates the HIVNL4-3 LTR in A3.01 T lymphocytes and that dominant negative Raf (C4) blocked 12-O-tetradecanoylphorbol-13-acetate induced transactivation. When cotransfected with infectious HIVNL4-3 DNA, membrane-targeted Raf induces viral replication up to 10-fold over basal levels, as determined by the release of newly synthesized p24gag protein. Our study clearly demonstrates that the activity of the catalytic domain of Raf in A3.01 T cells is dependent on its cellular localization. The functional consequences of active Raf in T lymphocytes include not only NF-κB activation and transactivation of the HIVNL4-3 LTR but also synthesis and release of HIV particles.  相似文献   
248.
A set of 18 plasmid subclones of the Autographa californica nuclear polyhedrosis virus genome, each containing an identified late expression factor gene (lef), supports expression from a late viral promoter in transient expression assays in the SF-21 cell line derived from Spodoptera frugiperda. We have constructed a further set of plasmids in which each lef open reading frame (ORF) is controlled by the Drosophila melanogaster heat shock protein 70 (hsp70) promoter and epitope tagged. Failure of this set of plasmids to support transient late gene expression, and the inability of the p47 ORF to replace the p47-containing plasmid supplied in the lef plasmid library, led to the identification of a 19th late expression factor gene (lef-12) located adjacent to the p47 gene. The sequence of lef-12 is predicted to encode a protein of 21 kDa with no homology to any previously identified protein. The set of 19 hsp70-controlled lef ORFs (HSEpiHis lef library) supports transient expression from a late viral promoter. lef-12 did not affect expression from an early baculovirus promoter. In TN-368 cells, which are also permissive for virus replication, lef-12 provided a stimulatory effect but did not appear to be essential.  相似文献   
249.
The demonstration that interleukin 2 (IL-2) is a lectin specific for oligomannosides allows to understand a new function for this cytokine: as a bifunctional molecule when bound to its receptor ss, IL-2 associates the latter which the CD3/TCR complex, interacting with oligosaccharides of CD3 through its carbohydrate-recognition domain (Zanetta et al. , 1996, Biochem. J., 318, 49-53). This induces the tyrosine phosphorylation of the IL-2R beta by ++p56(lck) , the first step of the IL-2-dependent signaling. Since this specific association is disrupted in vitro by oligomannosides with five and six mannose residues, we made the hypothesis that pathogenic cells or microorganisms could bind IL-2, consequently disturbing the IL-2- dependent response. This study shows that the pathogenic yeast Candida albicans (in contrast with nonpathogenic yeasts) binds high amounts of IL-2 as did cancer cells. In contrast with cancer cells, yeasts do not bind the Man6GlcNAc2-specific lectin CSL, an endogenous "amplifier of activation signals" (Zanetta et al. , 1995, Biochem. J., 311, 629-636).   相似文献   
250.
The myosin lattice spacing of single intact muscle fibers of the frog, Rana temporaria, was studied in Ringer's solution (standard osmolarity 230 mOsm) and hyper- and hypotonic salines (1.4 and 0.8 times standard osmolarity respectively) in the relaxed state, during "fixed end" tetani, and during shortening, using synchrotron radiation. At standard tonicity, a tetanus was associated with an initial brief lattice expansion (and a small amount of sarcomere shortening), followed by a slow compression (unaccompanied by sarcomere length changes). In hypertonic saline (myosin lattice compressed by 8.1%), these spacing changes were suppressed, in hypotonic saline (lattice spacing increased by 7.5%), they were enhanced. During unloaded shortening of activated fibers, a rapid lattice expansion occurred at all tonicities, but became larger as tonicity was reduced. This expansion was caused in part by the change in length of the preparation, but also by a recoil of a stressed radial compliance associated with axial force. The lattice spacing during unloaded shortening was equal to or occasionally greater than predicted for a relaxed fiber at that sarcomere length, indicating that the lattice compression associated with activation is rapidly reversed upon loss of axial force. Lattice recompression occurred upon termination of shortening under standard and hypotonic conditions, but was almost absent under hypertonic conditions. These observations indicate that axial cross-bridge tension is associated with a compressive radial force in intact muscle fibers at full overlap; however, this radial force exhibits a much greater sensitivity to lattice spacing than does the axial force.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号