首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   34篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   17篇
  2013年   24篇
  2012年   20篇
  2011年   22篇
  2010年   6篇
  2009年   19篇
  2008年   14篇
  2007年   21篇
  2006年   18篇
  2005年   9篇
  2004年   13篇
  2003年   14篇
  2002年   10篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有296条查询结果,搜索用时 46 毫秒
71.
The active immunotherapy concept relies on the use of vaccines that are capable of inducing antitumor immunity, reversion of the suppressive immunological environment, and long-term memory responses. Previously, antitumor vaccines based on a recombinant plasmid (pgDE7h) or a purified protein (gDE7) led to regression of early-established human papillomavirus (HPV)-associated tumors in a preclinical model. In this work, the anticancer vaccines were combined with cisplatin to treat HPV-induced tumors at advanced growth stages. The antitumor effects were evaluated in terms of tumor regression, induction of specific CD8+ T cells, and immune modulation of the tumor microenvironment. Acute toxicity induced by the treatment was measured by weight loss and histological alterations in the liver and kidneys. Our results revealed that the combination of cisplatin with either one of the tested immunotherapies (pgDE7h or gDE7) led to complete tumor regression in mice. Also, the combined treatment resulted in synergistic effects, particularly among mice immunized with gDE7, including activation of systemic and tumor-infiltrating E7-specific CD8+ T cells, tumor infiltration of macrophages and dendritic cells, and prevention of tumor relapses at different anatomical sites. Furthermore, the protocol allowed the reduction of cisplatin dosage and its intrinsic toxic effects, without reducing antitumor outcomes. These results expand our knowledge of active immunotherapy protocols and open perspectives for alternative treatments of HPV-associated tumors.  相似文献   
72.
Exosomes: A Bubble Ride for Prions?   总被引:6,自引:0,他引:6  
In certain cell types, endosomal multivesicular bodies may fuse with the cell surface in an exocytic manner. During this process, the small 50-90-nm-diameter vesicles contained in their lumen are released into the extracellular environment. The released vesicles are called exosomes. Exosome secretion can be used by cells to eject molecules targeted to intraluminal vesicles of multivesicular bodies, but particular cell types exploit exosomes as intercellular communication devices for transfer of proteins and lipids between cells. The molecular composition of exosomes is determined by sorting events within endosomes that occur concomitantly with the generation of intraluminal vesicles. As other raft-associated components, the glycosylphosphatidylinositol-linked prion protein transits through multivesicular bodies. Recent findings in non-neuronal cell models indicate prion protein association with secreted exosomes. Thus, exosomes could constitute vehicles for transmission of the infectious prion protein, bypassing cell-cell contact in the dissemination of prions.  相似文献   
73.
Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA-gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted.  相似文献   
74.
75.
Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless‐expressing Drosophila S2 cells, Wingless is present on exosome‐like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless‐containing exosome‐like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome‐like vesicles. Using these exosome markers and a cell‐based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless‐expressing cells.  相似文献   
76.

Background

Most patients with metastatic non-small cell lung cancer (NSCLC) will face treatment with systemic therapy. Current clinical studies are demonstrating improvements in chemotherapy and overall survival. However, it remains unclear whether these results are translated into clinical practice.

Methods

We reviewed all stage IV NSCLC patients without second malignancies that were diagnosed from 2004 to 2006 at our institution. 493 consecutive patients were included into this retrospective analysis and were followed-up until end of 2011.

Results

352 patients (71.4%) received systemic therapy for up to 7 lines. For most patients, adjustments of dosages or applications had to be made at some point of the treatment, but the total applied dose remained generally close to the intended dose. The best disease control (BDC) rate decreased with increasing therapy lines from 59.7% to about 35%. Patients with palliative local therapy but no systemic treatment demonstrated inferior survival (median 2.9 versus 8.7 months, p < 0.001). The median interval between last treatment and death was 50 days and 15 days for chemotherapy and anti-EGFR therapy, respectively. BDC to the previous therapy lines was predictive for improved BDC to third- but not second-line therapy. Performing multivariate analysis, BDC to previous therapy, never-/ former-smoking status, and age > 70 years were associated with improved survival performing third-line therapy.

Conclusions

Stage IV NSCLC patients may receive substantial systemic therapy resulting in response and median survival rates that are comparable to data from clinical studies. However, preselection factors are increasingly important to improve therapy outcome and life quality.  相似文献   
77.
In the degradative pathway, the progression of cargos through endosomal compartments involves a series of fusion and maturation events. The HOPS (homotypic fusion and protein sorting) complex is part of the machinery that promotes the progression from early to late endosomes and lysosomes by regulating the exchange of small GTPases. We report that an interaction between subunits of the HOPS complex and the ERM (ezrin, radixin, moesin) proteins is required for the delivery of EGF receptor (EGFR) to lysosomes. Inhibiting either ERM proteins or the HOPS complex leads to the accumulation of the EGFR into early endosomes, delaying its degradation. This impairment in EGFR trafficking observed in cells depleted of ERM proteins is due to a delay in the recruitment of Rab7 on endosomes. As a consequence, the maturation of endosomes is perturbed as reflected by an accumulation of hybrid compartments positive for both early and late endosomal markers. Thus, ERM proteins represent novel regulators of the HOPS complex in the early to late endosomal maturation.  相似文献   
78.

Background

Human macrophages (Mφ) express low levels of CD4 glycoprotein, which is constitutively recycled, and 40–50% of its localization is intracellular at steady-state. Although CD4-interacting proteins in lymphoid cells are well characterised, little is known about the CD4 protein interaction-network in human Mφ, which notably lack LCK, a Src family protein tyrosine kinase believed to stabilise CD4 at the surface of T cells. As CD4 is the main cellular receptor used by HIV-1, knowledge of its molecular interactions is important for the understanding of viral infection strategies.

Methodology/Principal Findings

We performed large-scale anti-CD4 immunoprecipitations in human primary Mφ followed by high-resolution mass spectrometry analysis to elucidate the protein interaction-network involved in induced CD4 internalization and degradation. Proteomic analysis of CD4 co-immunoisolates in resting Mφ showed CD4 association with a range of proteins found in the cellular cortex, membrane rafts and components of clathrin-adaptor proteins, whereas in induced internalization and degradation CD4 is associated with components of specific signal transduction, transport and the proteasome.

Conclusions/Significance

This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome has been analysed in human primary Mφ. Our data have identified important Mφ cell surface CD4-interacting proteins, as well as regulatory proteins involved in internalization and degradation. The data give valuable insights into the molecular pathways involved in the regulation of CD4 expression in Mφ and provide candidates/targets for further biochemical studies.  相似文献   
79.
Ligand-induced ubiquitylation of EGF receptor (EGFR) is an important regulatory mechanism that controls endocytic trafficking of the receptor and its signaling potential. Here we report that tetraspanin CD82/KAI1 specifically suppresses ubiquitylation of EGFR after stimulation with heparin-binding EGF or amphiregulin and alters the rate of recruitment of the activated receptor to EEA1-positive endosomes. The suppressive effect of CD82 is dependent on the heparin-binding domain of the ligand. Deletion of the C-terminal cytoplasmic domain of CD82 (CD82ΔC mutant) inhibits endocytic trafficking of the tetraspanin and compromises its activity toward heparin-binding EGF-activated EGFR. Reduced ubiquitylation of EGFR is accompanied by PKC-dependent increase in serine phosphorylation of c-Cbl in cells expressing elevated levels of CD82. Furthermore, phosphorylation of threonine 654 (PKC phosphorylation site) in the juxtamembrane domain of the receptor is considerably increased in CD82-expressing cells. These results describe previously unsuspected links between tetraspanin proteins and ubiquitylation of their molecular partners (e.g., EGFR). Our data identify CD82 as a new regulator of c-Cbl, which discriminatively controls the activity of this E3 ubiquitin ligase toward heparin-binding ligand-EGFR pairs. Taken together, these observations provide an important new insight into the modulatory role of CD82 in endocytic trafficking of EGF receptor.  相似文献   
80.
Expression of cell-intrinsic antiviral factors suppresses HIV-1 replication. We hypothesized that cellular activation modulates host restriction and susceptibility to HIV-1 infection. We measured the gene expression of 34 antiviral factors in healthy peripheral blood mononuclear cells (PBMC). Cellular activation induced expression of interferon-stimulated gene 15 (ISG15), tripartite motif 5α (TRIM5α), bone marrow stromal cell antigen 2 (BST-2)/tetherin, and certain apolipoprotein B mRNA editing enzyme 3 (APOBEC3) family members. Expression of RTF1, RNA polymerase II-associated factor 1 (PAF1), TRIM11, TRIM26, and BST-2/tetherin correlated with decreased HIV-1 infectivity. This report demonstrates synchronous effects of activation-induced antiviral genes on HIV-1 infectivity, providing candidates for pharmacological manipulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号