全文获取类型
收费全文 | 82篇 |
免费 | 5篇 |
专业分类
87篇 |
出版年
2019年 | 2篇 |
2017年 | 4篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 1篇 |
2013年 | 5篇 |
2012年 | 8篇 |
2011年 | 5篇 |
2009年 | 1篇 |
2008年 | 5篇 |
2007年 | 5篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 3篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1983年 | 2篇 |
1980年 | 1篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1968年 | 1篇 |
1966年 | 8篇 |
1965年 | 2篇 |
1964年 | 3篇 |
排序方式: 共有87条查询结果,搜索用时 15 毫秒
31.
32.
Rodríguez-Montelongo L Volentini SI Farías RN Massa EM Rapisarda VA 《Archives of biochemistry and biophysics》2006,451(1):1-7
NADH dehydrogenase-2 (NDH-2) from Escherichia coli respiratory chain is a membrane-bound cupric-reductase encoded by ndh gene. Here, we report that the respiratory system of a ndh deficient strain suffered a faster inactivation than that of the parental strain in the presence of tert-butyl hydroperoxide due to endogenous copper. The inactivation was similar for both strains when copper concentration increased in the culture media. Furthermore, several ndh deficient mutants grew less well than the corresponding parental strains in media containing either high or low copper concentrations. A mutant strain complemented with ndh gene almost recovered the parental phenotype for growing in copper limitation or excess. Then, NDH-2 gives the bacteria advantages to diminish the susceptibility of the respiratory chain to damaging effects produced by copper and hydroperoxides and to survive in extreme copper conditions. These results suggest that NDH-2 contributes in the bacterial oxidative protection and in the copper homeostasis. 相似文献
33.
Josefina M. Villegas Lorena Valle Faustino E. Morán Vieyra María R. Rintoul Claudio D. Borsarelli Viviana A. Rapisarda 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(3):576-584
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA = 7.0(± 0.8) × 104 M− 1. Taken together, the FAD–protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases. 相似文献
34.
Giuseppe E. Massimino Cocuzza Silvia Di Silvestro Rosanna Giordano Carmelo Rapisarda 《ZooKeys》2015,(529):123-144
The discrimination of species in the genus Anuraphis is particularly difficult due to the overlap of morphological characters. In this study, we used the 5’ (barcode) and 3’ regions of cytochrome oxidase I (COI) to test their utility in the identification of species in this genus as well as closely related species. Both regions were useful to discriminate all the species tested. However the non-barcode 3’ region resulted in higher resolution and support for species relationships when the data were analyzed using both Maximum Likelihood and MrBayes. We propose the development of an integrated database that encompasses morphological, molecular, life-cycle, host plant and bibliographic information to facilitate and increase the accuracy of aphid identification. 相似文献
35.
Stefania Ferro Giovanna Certo Laura De Luca Maria Paola Germanò Antonio Rapisarda Rosaria Gitto 《Journal of enzyme inhibition and medicinal chemistry》2016,31(3):398-403
Tyrosinase is a copper-containing enzyme widely distributed in nature, involved in the biosynthesis of melanin whose role is to protect the skin from ultraviolet damage. A great interest has been shown on the melanin involvement in malignant melanoma and other carcinogenetic processes. These phenomena have encouraged the research of tyrosinase inhibitors useful in therapeutic field as well as in foods and cosmetics to prevent browning. The idea was to screen our “in house” database to select suitable lead compounds for the discovery of potential drug-inhibiting enzyme. The obtained biological results demonstrated that compounds containing 4-fluorobenzyl moiety at N???1 position of indole system showed the best activity. In addition, the role of the portion linked to the carbonyl group at C???3 was discussed. A Lineweaver–Burk kinetic analysis of the most active indoles, CHI 1043 and derivative 4, showed a mixed-type inhibition in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) as substrate. 相似文献
36.
37.
38.
Caprini M Ferroni S Planells-Cases R Rueda J Rapisarda C Ferrer-Montiel A Montal M 《The Journal of biological chemistry》2001,276(24):21070-21076
Sequence similarity among and electrophysiological studies of known potassium channels, along with the three-dimensional structure of the Streptomyces lividans K(+) channel (KcsA), support the tenet that voltage-gated K(+) channels (Kv channels) consist of two distinct modules: the "voltage sensor" module comprising the N-terminal portion of the channel up to and including the S4 transmembrane segment and the "pore" module encompassing the C-terminal portion from the S5 transmembrane segment onward. To substantiate this modular design, we investigated whether the pore module of Kv channels may be replaced with the pore module of the prokaryotic KcsA channel. Biochemical and immunocytochemical studies showed that chimeric channels were expressed on the cell surface of Xenopus oocytes, demonstrating that they were properly synthesized, glycosylated, folded, assembled, and delivered to the plasma membrane. Unexpectedly, surface-expressed homomeric chimeras did not exhibit detectable voltage-dependent channel activity upon both hyperpolarization and depolarization regardless of the expression system used. Chimeras were, however, strongly dominant-negative when coexpressed with wild-type Kv channels, as evidenced by the complete suppression of wild-type channel activity. Notably, the dominant-negative phenotype correlated well with the formation of stable, glycosylated, nonfunctional, heteromeric channels. Collectively, these findings imply a structural compatibility between the prokaryotic pore module and the eukaryotic voltage sensor domain that leads to the biogenesis of non-responsive channels. Our results lend support to the notion that voltage-dependent channel gating depends on the precise coupling between both protein domains, probably through a localized interaction surface. 相似文献
39.
40.
The single-channel behavior of the hyperpolarization-activated, ClC-2-like inwardly rectifying Cl- current (IClh), induced by long-term dibutyryl-cyclic-AMP-treated cultured cortical rat astrocytes, was analyzed with the patch-clamp technique. In outside-out patches in symmetrical 144 mM Cl-solutions, openings of hyperpolarization-activated small-conductance Cl channels revealed burst activity of two equidistant conductance levels of 3 and 6 pS. The unitary openings displayed slow activation kinetics. The probabilities of the closed and conducting states were consistent with a double-barrelled structure of the channel protein. These results suggest that the astrocytic ClC-2-like Cl- current Iclh is mediated by a small-conductance Cl channel, which has the same structural motif as the Cl- channel prototype CIC-0. 相似文献