首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6340篇
  免费   386篇
  国内免费   1篇
  2023年   65篇
  2022年   99篇
  2021年   208篇
  2020年   134篇
  2019年   179篇
  2018年   207篇
  2017年   157篇
  2016年   234篇
  2015年   400篇
  2014年   383篇
  2013年   454篇
  2012年   511篇
  2011年   488篇
  2010年   289篇
  2009年   279篇
  2008年   327篇
  2007年   313篇
  2006年   306篇
  2005年   228篇
  2004年   197篇
  2003年   191篇
  2002年   158篇
  2001年   105篇
  2000年   94篇
  1999年   68篇
  1998年   52篇
  1997年   35篇
  1996年   34篇
  1995年   30篇
  1994年   22篇
  1993年   23篇
  1992年   34篇
  1991年   37篇
  1990年   25篇
  1989年   27篇
  1988年   18篇
  1987年   20篇
  1986年   27篇
  1985年   25篇
  1984年   21篇
  1983年   20篇
  1982年   16篇
  1981年   19篇
  1980年   10篇
  1979年   20篇
  1978年   13篇
  1977年   10篇
  1975年   12篇
  1974年   11篇
  1973年   9篇
排序方式: 共有6727条查询结果,搜索用时 750 毫秒
961.
962.
963.
964.
965.
The flavoenzyme nikD is required for the biosynthesis of nikkomycin antibiotics. NikD exhibits an unusual long wavelength absorption band attributed to a charge transfer complex of FAD with an unknown charge transfer donor. NikD crystals contain an endogenous active site ligand. At least four different compounds are detected in nikD extracts, including variable amounts of two ADP derivatives that bind to the enzyme's dinucleotide binding motif in competition with FAD, picolinate (0.07 mol/mol of nikD) and an unknown picolinate-like compound. Picolinate, the product of the physiological catalytic reaction, matches the properties deduced for the active site ligand in nikD crystals. The charge transfer band is eliminated upon mixing nikD with excess picolinate but not by a reversible unfolding procedure that removes the picolinate-like compound, ruling out both compounds as the intrinsic charge transfer donor. Mutation of Trp355 to Phe eliminates the charge transfer band, accompanied by a 30-fold decrease in substrate binding affinity. The results provide definitive evidence for Trp355 as the intrinsic charge transfer donor. The indole ring of Trp355 is coplanar with or perpendicular to the flavin ring in "open" or "closed" crystalline forms of nikD, respectively. Importantly, a coplanar configuration is required for charge transfer interaction. Absorption in the long wavelength region therefore constitutes a valuable probe for monitoring conformational changes in solution that are likely to be important in nikD catalysis.  相似文献   
966.
A critical requirement for cell survival after trauma is sealing of breaks in the cell membrane [M. Bier, S.M. Hammer, D.J. Canaday, R.C Lee, Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells, Bioelectromagnetics 20 (1999) 194-201; R.C. Lee, D.C. Gaylor, D. Bhatt, D.A. Israel, Role of cell membrane rupture in the pathogenesis of electrical trauma, J. Surg. Res. 44 (1988) 709-719; R.C. Lee, J.F. Burke, E.G. Cravalho (Eds.), Electrical Trauma: The Pathophysiology, Manifestations, and Clinical Management, Cambridge University Press, 1992; B.I. Tropea, R.C. Lee, Thermal injury kinetics in electrical trauma, J. Biomech. Engr. 114 (1992) 241-250; F. Despa, D.P. Orgill, J. Newalder, R.C Lee, The relative thermal stability of tissue macromolecules and cellular structure in burn injury, Burns 31 (2005) 568-577; T.A. Block, J.N. Aarsvold, K.L. Matthews II, R.A. Mintzer, L.P. River, M. Capelli-Schellpfeffer, R.L. Wollman, S. Tripathi, C.T. Chen, R.C. Lee, The 1995 Lindberg Award. Nonthermally mediated muscle injury and necrosis in electrical trauma, J. Burn Care and Rehabil. 16 (1995) 581-588; K. Miyake, P.L. McNeil, Mechanical injury and repair of cells, Crit. Care Med. 31 (2003) S496-S501; R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo, Proc. Natl. Acad. Sci. 89 (1992) 4524-4528; J.D. Marks, C.Y. Pan, T. Bushell, W. Cromie, R.C. Lee, Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection, FASEB J. 15 (2001) 1107-1109; B. Greenebaum, K. Blossfield, J. Hannig, C.S. Carrillo, M.A. Beckett, R.R. Weichselbaum, R.C. Lee, Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation, Burns 30 (2004) 539-547; G. Serbest, J. Horwitz, K. Barbee, The effect of poloxamer-188 on neuronal cell recovery from mechanical injury, J. Neurotrauma 22 (2005) 119-132]. The triblock copolymer surfactant Poloxamer 188 (P188) is known to increase the cell survival after membrane electroporation [R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo, Proc. Natl. Acad. Sci. 89 (1992) 4524-4528; Z. Ababneh, H. Beloeil, C.B. Berde, G. Gambarota, S.E. Maier, R.V. Mulkern, Biexponential parametrization of T2 and diffusion decay curves in a rat muscle edema model: Decay curve components and water compartments, Magn. Reson. Med. 54 (2005) 524-531]. Here, we use a rat hind-limb model of electroporation injury to determine if the intravenous administration of P188 improves the recovery of the muscle function. Rat hind-limbs received a sequence of either 0, 3, 6, 9, or 12 electrical current pulses (2 A, 4 ms duration, 10 s duty cycle). Magnetic resonance imaging (MRI) analysis, muscle water content and compound muscle action potential (CMAP) amplitudes were compared. Electroporation injury manifested edema formation and depression of the CMAP amplitudes. P188 (one bolus of 1 mg/ml of blood) was administrated 30 or 60 min after injury. Animals receiving P188 exhibited reduced tissue edema (p<0.05) and increased CMAP amplitudes (p<0.03). By comparison, treatment with 10 kDa neutral dextran, which produces similar serum osmotic effects as P188, had no effect on post-electroporation recovery. Noteworthy, the present results suggest that a single intravenous dose of P188 is effective to restore the structural integrity of damaged tissues with intact circulation.  相似文献   
967.
Echinococcus granulosus antigen B is an oligomeric protein of 120-160 kDa composed by 8-kDa (AgB8) subunits. Here, we demonstrated that the AgB8 recombinant subunits AgB8/1, AgB8/2 and AgB8/3 are able to self-associate into high order homo-oligomers, showing similar properties to that of parasite-produced AgB, making them valuable tools to study AgB structure. Dynamic light scattering, size exclusion chromatography and cross-linking assays revealed approximately 120- to 160-kDa recombinant oligomers, with a tendency to form populations with different aggregation states. Recombinant oligomers showed helical circular dichroism spectra and thermostability similar to those of purified AgB. Cross-linking and limited proteolysis experiments indicated different degrees of stability and compactness between the recombinant oligomers, with the AgB8/3 one showing a more stable and compact structure. We have also built AgB8 subunit structural models in order to predict the surfaces possibly involved in electrostatic and hydrophobic interactions during oligomerization.  相似文献   
968.
The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol.  相似文献   
969.
Solution pH affects numerous biological processes and some biological membranes are exposed to extreme pH environments. We utilized micropipette aspiration of giant unilamellar vesicles composed of 1-stearoyl-2-oleoyl-phosphatidylcholine to characterize the effect of solution pH (2-9) on membrane mechanical properties. The elastic area compressibility modulus was unaffected between pH 3 and 9 but was reduced by approximately 30% at pH 2. Fluorescence experiments utilizing the phase-sensitive probe Laurdan confirmed gel-phase characteristics at pH 2, explaining the reduction of membrane elasticity. The membrane bending stiffness, kc, increased by approximately 40% at pH 4 and pH 9 over the control value at pH 6.5. Electrophoretic mobility measurements indicate that these changes are qualitatively consistent with theoretical models that predict the effect of membrane surface charge density and Debye length on kc, substantiating a coupling between the mechanical and interfacial electrical properties of the membrane. The effect of pH on intramembrane electrical properties was examined by studying the spectral shifts of the potentiometric probe di-8 ANEPPS. The intramembrane (dipole) potential (Psid) increased linearly as the solution pH decreased in a manner consistent with the partitioning of hydroxide ions into the membrane. However, changes in Psid did not correlate with changes in kc. These mechanical and electrical studies lead to the conclusion that the effect of pH on membrane bending stiffness results from alterations in interfacial, as opposed to intramembrane, electrostatics.  相似文献   
970.
In this study, a model of a continuous pilot photobioreactor for microalgae production is proposed. Three aspects have been studied: the modelling of kinetic growth, the gas-liquid transfer and the hydrodynamics in the photobioreactor. The modelling of each aspect has been developed with the dynamic simulation software SpeedUp, after experimental studies, then validated step-by-step. The connection of these three aspects aims to predict and optimise biomass production of the pilot plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号