首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8404篇
  免费   576篇
  国内免费   113篇
  2021年   160篇
  2020年   78篇
  2019年   97篇
  2018年   121篇
  2017年   95篇
  2016年   141篇
  2015年   215篇
  2014年   260篇
  2013年   409篇
  2012年   457篇
  2011年   440篇
  2010年   260篇
  2009年   250篇
  2008年   310篇
  2007年   326篇
  2006年   315篇
  2005年   284篇
  2004年   249篇
  2003年   245篇
  2002年   258篇
  2001年   196篇
  2000年   200篇
  1999年   171篇
  1998年   82篇
  1997年   86篇
  1996年   81篇
  1995年   76篇
  1994年   74篇
  1993年   72篇
  1992年   178篇
  1991年   159篇
  1990年   159篇
  1989年   145篇
  1988年   124篇
  1987年   144篇
  1986年   123篇
  1985年   155篇
  1984年   147篇
  1983年   145篇
  1982年   110篇
  1981年   92篇
  1980年   70篇
  1979年   136篇
  1978年   95篇
  1977年   100篇
  1976年   76篇
  1975年   90篇
  1974年   91篇
  1973年   85篇
  1972年   96篇
排序方式: 共有9093条查询结果,搜索用时 312 毫秒
951.
952.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.  相似文献   
953.
Vascular smooth muscle cell (VSMC) migration from media to intima and its multiplication in intima is a contributing factor in the pathogenesis of atherosclerosis and restenosis after angioplasty. Previously, we have demonstrated that STAT-3-dependent cytosolic phospholipase A(2) (cPLA(2)) expression is needed for VSMC motility induced by platelet-derived growth factor-BB, a receptor tyrosine kinase agonist (Neeli et al. (2005) J. Biol. Chem. 279, 46122-46128). In order to learn more about the STAT-3-cPLA(2) axis in motogenic signaling, here we have studied its role in VSMC motility in response to a G protein-coupled receptor (GPCR) agonist, thrombin. Thrombin induced VSMC motility in a dose-dependent manner with a maximum effect at 0.5 units/ml. Thrombin activated STAT-3 as measured by its tyrosine phosphorylation and translocation from the cytoplasm to the nucleus. Forced expression of a dominant negative mutant of STAT-3 reduced thrombin-induced STAT-3 tyrosine phosphorylation and its translocation from the cytoplasm to the nucleus. Thrombin stimulated STAT-3-DNA binding and reporter gene activities in VSMC, and these responses were blocked by FS3DM, a dominant negative mutant of STAT-3. FS3DM also attenuated thrombin-induced VSMC motility. Thrombin induced the expression of cPLA(2) in a time- and STAT-3-dependent manner. In addition, pharmacological inhibition of cPLA(2) blocked thrombin-induced VSMC motility. Furthermore, exogenous addition of arachidonic acid rescued thrombin-induced VSMC motility from inhibition by blockade of STAT-3 activation. Forced expression of cPLA(2) also surpassed the inhibitory effect of dominant negative STAT-3 on thrombin-induced VSMC motility. Together, these results show that thrombin-induced VSMC motility requires STAT-3-dependent induction of expression of cPLA(2).  相似文献   
954.
Human DPY-30-like is a homolog of C. elegans DPY-30. DPY-30 is an essential component of dosage compensation machinery and loss of dpy-30 activity results in XX-specific lethality. In XO animals, DPY-30 is required for developmental processes other than dosage compensation. In yeast, the homolog of DPY-30, Saf19p, functions as a member of histone 3 lysine 4 methylation complex, which is the key part of epigenetic developmental control. In this report, human DPY-30-like protein was overexpressed and purified with the goal of structure determination. It was crystallized at 291 K in hanging drops by the vapour diffusion technique from a precipitant solution consisting of (NH4)2SO4 (1.5-2.0 M), Tris-HCl (0.1 M, pH 8.0). The crystal diffracted to 2.7 A resolution at 100 K in-house and belongs to the space group P4(1)2(1)2 or P4(3)2(1)2 with unit-cell parameters of a=b=74.5 A, c=87.0 A, alpha=beta=gamma=90.0 degrees. The asymmetric unit contains two molecules with 49% solvent content. We also analyzed its biochemical and biophysical characterizations. Efforts are now under way to determine the molecular structure of the DPY-30-like. These studies will open a new avenue towards the structure-based functional analysis of human DPY-30-like and dosage compensation machinery.  相似文献   
955.
Cholesterol, a major neutral lipid component of biological membranes and the lung epithelial lining fluids, is susceptible to oxidation by reactive oxygen and nitrogen species including ozone. The oxidation by ozone in biological environments results in the formation of 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (cholesterol secoaldehyde or CSeco, major product) along with some other minor products. Recently, CSeco has been implicated in the pathogenesis of atherosclerosis and Alzheimer's disease. In this communication, we report that CSeco induces cytotoxicity in H9c2 cardiomyoblasts with an IC(50) of 8.9+/-1.29 microM (n=6). The observed effect of CSeco at low micromolar concentrations retained several key features of apoptosis, such as changes in nuclear morphology, phosphatidylserine externalization, DNA fragmentation, and caspase 3/7 activity. Treatment of cardiomyocytes with 5 microM CSeco for 24h, for instance, resulted in 30.8+/-3.28% apoptotic and 1.8+/-1.11% of necrotic cells as against DMSO controls that only showed 1.3+/-0.33% of apoptosis and 1.6+/-0.67% of necrosis. In general, the loss of cellular viability paralleled the increased occurrence of apoptotic cells in various CSeco treatments. This study, for the first time, demonstrates the induction of apoptotic cell death in cardiomyocytes by a cholesterol ozonation product, implying a role for ozone in myocardial injury.  相似文献   
956.
Investigation of factors that modulate amyloid formation of proteins is important to understand and mitigate amyloid-related diseases. To understand the role of electrostatic interactions and the effect of ionic cosolutes, especially anions, on amyloid formation, we have investigated the effect of salts such as NaCl, NaI, NaClO(4), and Na(2)SO(4) on the amyloid fibril growth of beta(2)-microglobulin, the protein involved in dialysis-related amyloidosis. Under acidic conditions, these salts exhibit characteristic optimal concentrations where the fibril growth is favored. The presence of salts leads to an increase in hydrophobicity of the protein as reported by 8-anilinonaphthalene-1-sulfonic acid, indicating that the anion interaction leads to the necessary electrostatic and hydrophobic balance critical for amyloid formation. However, high concentrations of salts tilt the balance to high hydrophobicity, leading to partitioning of the protein to amorphous aggregates. Such amorphous aggregates are not competent for fibril growth. The order of anions based on the lowest concentration at which fibril formation is favored is SO(4)(2)(-) > ClO(4)(-) > I(-) > Cl(-), consistent with the order of their electroselectivity series, suggesting that preferential anion binding, rather than general ionic strength effect, plays an important role in the amyloid fibril growth. Anion binding is also found to stabilize the amyloid fibrils under acidic condition. Interestingly, sulfate promotes amyloid growth of beta(2)-microglobulin at pH between 5 and 6, closer to its isoelectric point. Considering the earlier studies on the role of glycosaminoglycans and proteoglycans (i.e., sulfated polyanions) on amyloid formation, our study suggests that preferential interaction of sulfate ions with amyloidogenic proteins may have biological significance.  相似文献   
957.
Das M  Rao BV  Ghosh S  Varadarajan R 《Biochemistry》2005,44(15):5923-5930
While the hydrophobic driving force is thought to be a major contributor to protein stability, it is difficult to experimentally dissect out its contribution to the overall free energy of folding. We have made large to small substitutions of buried hydrophobic residues at positions 8 and 13 in the peptide/protein complex, RNase-S, and have characterized the structures by X-ray crystallography. The thermodynamics of association of these mutant S peptides with S protein was measured in the presence of different concentrations of methanol and ethanol. The reduction in the strength of the hydrophobic driving force in the presence of these organic solvents was estimated from surface-tension data as well as from the dependence of the DeltaC(p) of protein/peptide binding on the alcohol concentration. The data indicated a decrease in the strength of the hydrophobic driving force of about 30-40% over a 0-30% range of the alcohol concentration. We observe that large to small substitutions destabilize the protein. However, the amount of destabilization, relative to the wild type, is independent of the alcohol concentration over the range of alcohol concentrations studied. The data clearly indicate that decreased stability of the mutants is primarily due to the loss of packing interactions rather than a reduced hydrophobic driving force and suggest a value of the hydrophobic driving force of less than 18 cal mol(-)(1) A(2).  相似文献   
958.
While it has been demonstrated that AdoMet is required for DNA cleavage by Type III restriction enzymes, here we show that in the presence of exogenous AdoMet, the head-to-head oriented recognition sites are cleaved only on a supercoiled DNA. On a linear DNA, exogenous AdoMet strongly drives methylation while inhibiting cleavage reaction. Strikingly, AdoMet analogue sinefungin results in cleavage at all recognition sites irrespective of the topology of DNA. The cleavage reaction in the presence of sinefungin is ATP dependent. The site of cleavage is comparable with that in the presence of AdoMet. The use of EcoP15I restriction in presence of sinefungin as an improved tool for serial analysis of gene expression is discussed.  相似文献   
959.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   
960.
We observed that the filamentous fungus, Aspergillus oryzae, grown on agar media burst out cytoplasmic constituents from the hyphal tip soon after flooding with water. Woronin body is a specialized organelle known to plug the septal pore adjacent to the lysed compartment to prevent extensive loss of cytoplasm. A. oryzae Aohex1 gene homologous to Neurospora crassa HEX1 gene encoding a major protein in Woronin body was expressed as a fusion with DsRed2, resulting in visualization of Woronin body. Confocal microscopy and three-dimensional reconstruction of images visualized the septal pore as a dark region surrounded by green fluorescence of EGFP-fused secretory protein, RNase T1, on the septum. Dual fluorescent labeling revealed the plugging of the septal pores adjacent to the lysed apical compartments by Woronin bodies during hypotonic shock. Disruption of Aohex1 gene caused disappearance of Woronin bodies and the defect to prevent extensive loss of cytoplasm during hypotonic shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号