首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2116篇
  免费   130篇
  2023年   14篇
  2022年   30篇
  2021年   40篇
  2020年   32篇
  2019年   27篇
  2018年   63篇
  2017年   34篇
  2016年   57篇
  2015年   97篇
  2014年   96篇
  2013年   140篇
  2012年   170篇
  2011年   125篇
  2010年   74篇
  2009年   73篇
  2008年   95篇
  2007年   113篇
  2006年   98篇
  2005年   87篇
  2004年   75篇
  2003年   57篇
  2002年   57篇
  2001年   49篇
  2000年   43篇
  1999年   28篇
  1998年   24篇
  1997年   19篇
  1996年   11篇
  1995年   20篇
  1994年   9篇
  1992年   25篇
  1991年   35篇
  1990年   20篇
  1989年   10篇
  1988年   20篇
  1987年   27篇
  1986年   23篇
  1985年   21篇
  1984年   21篇
  1983年   12篇
  1982年   15篇
  1981年   10篇
  1980年   10篇
  1979年   21篇
  1978年   9篇
  1977年   9篇
  1976年   11篇
  1975年   17篇
  1974年   11篇
  1973年   11篇
排序方式: 共有2246条查询结果,搜索用时 15 毫秒
991.
We investigated the effect of β-pinene on reactive oxygen species (ROS: lipid peroxidation, membrane integrity, hydrogen peroxide and superoxide ions) generation and activity of antioxidant defense system during early hours of treatment (4, 8, 16 and 24 h) in hydroponically grown Triticum aestivum (wheat). β-Pinene reduced the root and shoot growth of the hydroponically grown wheat. However, the reduction was more pronounced in root length than in shoot length. β-Pinene enhanced ROS generation as indicated by increased levels of malondialdehyde (20–87 %), hydrogen peroxide (9–45 %) and superoxide ion (23–179 %) content, thereby suggesting lipid peroxidation and induction of oxidative stress in a time- and concentration-dependent manner. The oxidative damage was more pronounced at ≥10 µM β-pinene and at ≥8 h after exposure. β-Pinene caused a severe electrolyte leakage from wheat roots indicating membrane disruption and loss of integrity. Enhanced lipid peroxidation and loss of membrane integrity were confirmed by in situ histochemical studies. β-Pinene provoked increase in the activity of lipoxygenase and upregulation in the activities of antioxidant enzymes: catalases, superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases. The enhanced activity of lipoxygenases evoked by β-pinene paralleled higher accumulation of MDA, thereby suggesting that antioxidant defense mechanism was not able to prevent β-pinene-induced lipid peroxidation.  相似文献   
992.
993.
The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40–70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.  相似文献   
994.
Surface modification of silk fibroin (SF) materials using environmentally friendly and non‐hazardous process to tailor them for specific application as biomaterials has drawn a great deal of interest in the field of biomedical research. To further explore this area of research, in this report, polypropylene (PP) grafted muga (Antheraea assama) SF (PP‐AASF) suture is developed using plasma treatment and plasma graft polymerization process. For this purpose, AASF is first sterilized in argon (Ar) plasma treatment followed by grafting PP onto its surface. AASF is a non‐mulberry variety having superior qualities to mulberry SF and is still unexplored in the context of suture biomaterial. AASF, Ar plasma treated AASF (AASFAr) and PP‐AASF are subjected to various characterization techniques for better comparison and the results are attempted to correlate with their observed properties. Excellent mechanical strength, hydrophobicity, antibacterial behavior, and remarkable wound healing activity of PP‐AASF over AASF and AASFAr make it a promising candidate for application as sterilized suture biomaterial. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 355–365, 2014.  相似文献   
995.
Neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), constitute a major worldwide health problem. Several hypothesis have been put forth to elucidate the basis of onset and pathogenesis of AD and PD; however, till date, none of these seems to clearly elucidate the complex pathoetiology of these disorders. Notably, copper dyshomeostasis has been shown to underlie the pathophysiology of several neurodegenerative diseases including AD and PD. Numerous studies have concluded beyond doubt that imbalance in copper homeostatic mechanisms in conjunction with aging causes an acceleration in the copper toxicity elicited oxidative stress, which is detrimental to the central nervous system. Amyloid precursor protein and α-synuclein protein involved in AD and PD are copper binding proteins, respectively. In this review, we have discussed the possible association of copper metabolism proteins with AD and PD along with briefly outlining the expanding proportion of “copper interactome” in human biology. Using network biology, we found that copper metabolism proteins, superoxide dismutase 1 and ceruloplasmin may represent direct and indirect link with AD and PD, respectively.  相似文献   
996.
Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome‐wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow‐up in an additional 21 families at linked loci. We used two‐point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12‐22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1‐23.2, centering over the FHM2 locus (two‐point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine‐affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12‐22, and a second locus that may contribute to migraine in the general population at 1q23.1‐23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine‐mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy‐associated migraine.  相似文献   
997.
A fast and simple polymerase chain reaction method has been developed for detection of Phytophthora infestans oospores, the causal agent of Late blight of Potato in soil. The method involves the disruption of oospores by grinding dry soil, using abrasive properties, in the presence of glass powder and skimmed milk powder within a short time. The latter prevents loss of DNA by adsorption to soil particles or by degradation and reduces the co-extraction of PCR inhibitors with the DNA. After phenol/chloroform extraction; the DNA is suitable for direct PCR amplification without a precipitation step. This amplification leads to detection of pathogen in infested soils before planting of crop. The real-time PCR assay we describe is highly sensitive and specific, and has several advantages over conventional PCR assays used for P. infestans detection to confirm positive inoculum level in potato seeds and elsewhere. With increasing amounts of standard DNA templates, the respective threshold cycle (Ct) values were determined and a linear relationship was established between these Ct values and the logarithm of initial template amounts. The method is rapid, cost efficient, and when combined with suitable internal controls can be applied to the detection and quantification of P. infestans oospores on a large-scale basis.  相似文献   
998.

Background

In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life.

Results

In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides.

Conclusion

In summary, this study describes a web server ‘HLP’ that has been developed for assisting scientific community for predicting intestinal half-life of peptides and to design mutant peptides with better half-life and physicochemical properties. HLP models were trained using a dataset of peptides whose half-lives have been determined experimentally in crude intestinal proteases preparation. Thus, HLP server will help in designing peptides possessing the potential to be administered via oral route (http://www.imtech.res.in/raghava/hlp/).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-282) contains supplementary material, which is available to authorized users.  相似文献   
999.
In the present communication, newly synthesized 8-quinolinamines (25-27) related to previously reported 2-tert-butylprimaquine (2) were evaluated for their in vitro antimalarial activity against chloroquine sensitive and resistant Plasmodium falciparum strains, in vivo antimalarial activity against P. berghei infected mice, in vitro antileishmanial activity against Leishmania donovani, in vitro antimicrobial activity against various fungi and bacteria, and cytotoxicity in a panel of mammalian cell lines. No promising cytotoxicities were observed for compounds reported herein. Analogue 25 was found to exhibit curative antimalarial activity at a dose of 25 mg/kg/dayx4 in a P. berghei infected mice model, and produced suppressive activity at a lower dose of 10 mg/kg/dayx4. In vitro antileishmanial activities (IC50 and IC90) comparable to standard drug pentamidine were exhibited by all synthesized 8-quinolinamines 25-27. At the same time, promising antibacterial and antifungal activities were also observed for synthesized compounds against a panel consisting of several bacteria and fungi.  相似文献   
1000.
Skin maintenance and healing after wounding requires complex epithelial-mesenchymal interactions purportedly mediated by growth factors and cytokines. We show here that, for wound healing, transforming growth factor-β-activated kinase 1 (TAK1) in keratinocytes activates von Hippel-Lindau tumor suppressor expression, which in turn represses the expression of platelet-derived growth factor-B (PDGF-B), integrin β1, and integrin β5 via inhibition of the Sp1-mediated signaling pathway in the keratinocytes. The reduced production of PDGF-B leads to a paracrine-decreased expression of hepatocyte growth factor in the underlying fibroblasts. This TAK1 regulation of the double paracrine PDGF/hepatocyte growth factor signaling can regulate keratinocyte cell proliferation and is required for proper wound healing. Strikingly, TAK1 deficiency enhances cell migration. TAK1-deficient keratinocytes displayed lamellipodia formation with distinct microspike protrusion, associated with an elevated expression of integrins β1 and β5 and sustained activation of cdc42, Rac1, and RhoA. Our findings provide evidence for a novel homeostatic control of keratinocyte proliferation and migration mediated via TAK1 regulation of von Hippel-Lindau tumor suppressor. Dysfunctional regulation of TAK1 may contribute to the pathology of non-healing chronic inflammatory wounds and psoriasis.Wound healing is a highly dynamic process that involves complex interactions of extracellular matrix molecules, soluble mediators, various resident cells, and infiltrating leukocyte subtypes. The immediate goal in repair is to achieve tissue integrity and homeostasis. The healing process involves three phases that overlap in time and space, namely inflammation, re-epithelialization, and tissue remodeling. Re-epithelialization is accomplished by increased keratinocyte proliferation and guided migration of the keratinocytes over the granulation tissue. Such processes require ordered changes in keratinocyte behavior and phenotype, which are dictated by the interplay of keratinocytes with dermal fibroblasts, i.e. epithelial-mesenchymal communication. This complex interplay demands the integration of diverse signals through a network of soluble factors exerting autocrine and paracrine activity from the wound microenvironment, culminating in appropriate cellular responses (1, 2). Aberrations to this signaling network may impair or enhance cell migration and proliferation, leading to insufficient or excessive wound repair and life-threatening consequences such as tumor growth and metastasis. Therefore, to understand the effect of any molecule in normal cellular function, studies into its role in this signaling network and how they culminate to an appropriate cell response become fundamental and necessary.Transforming growth factor-β (TGF-β)4-activated kinase 1 (TAK1) belongs to the MAPK kinase kinase family. This serine/threonine kinase is a key intermediate in inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1 (IL-1) (3, 4) as well as TGF-β (5)-mediated signaling pathways. Activated TAK1 has the capacity to stimulate its downstream MAPK and NFκB-inducing kinase-IκB kinase cascades (6). The former activates c-Jun N-terminal kinase (JNK) and p38 MAPK while the latter activates NF-κB (3, 7, 8). A deficiency in TAK1 results in impaired TNF-α- and IL-1-stimulated JNK activity, p38 phosphorylation, and IκBα degradation (7, 9). Studies of keratinocyte-specific TAK1 knock-out (TAK1-KO) mice confirmed the role of TAK1 in skin inflammation. These TAK1-KO mice died by postnatal day 7 and developed intra-epidermal micro-abscesses (10, 11). The TAK1-KO mice displayed abnormal epidermis with impaired differentiation and increased cellular proliferation; however, no significant difference in proliferation index was observed in culture of these mutant keratinocytes in vitro. Nevertheless, the latter suggests a crucial role of the underlying dermis in mitigating some effects of epidermal TAK1. Although the role of TAK1 in inflammatory response is well established, the role of TAK1 and its mechanism of action in keratinocyte proliferation and migration remain unknown.Herein, we show that the deficiency in TAK1 resulted in increased cell proliferation and migration. We provide evidence of a double paracrine mechanism that make a pivotal contribution to the enhanced cell proliferation in TAK1-deficient epidermis. This study also reveals a novel homeostatic role of TAK1 in controlling cell migration. These aberrant phenotypes, as a consequence of TAK1 deficiency, are mediated via the dysregulated expression of von Hippel-Lindau tumor suppressor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号