首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   12篇
  184篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   10篇
  2014年   7篇
  2013年   8篇
  2012年   16篇
  2011年   22篇
  2010年   15篇
  2009年   7篇
  2008年   11篇
  2007年   6篇
  2006年   12篇
  2005年   11篇
  2004年   7篇
  2003年   2篇
  2002年   9篇
  2001年   5篇
  1999年   2篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有184条查询结果,搜索用时 0 毫秒
101.
Cooperation is fundamental to the evolution of human society. We regularly observe cooperative behaviour in everyday life and in controlled experiments with anonymous people, even though standard economic models predict that they should deviate from the collective interest and act so as to maximise their own individual payoff. However, there is typically heterogeneity across subjects: some may cooperate, while others may not. Since individual factors promoting cooperation could be used by institutions to indirectly prime cooperation, this heterogeneity raises the important question of who these cooperators are. We have conducted a series of experiments to study whether benevolence, defined as a unilateral act of paying a cost to increase the welfare of someone else beyond one''s own, is related to cooperation in a subsequent one-shot anonymous Prisoner''s dilemma. Contrary to the predictions of the widely used inequity aversion models, we find that benevolence does exist and a large majority of people behave this way. We also find benevolence to be correlated with cooperative behaviour. Finally, we show a causal link between benevolence and cooperation: priming people to think positively about benevolent behaviour makes them significantly more cooperative than priming them to think malevolently. Thus benevolent people exist and cooperate more.  相似文献   
102.
We retrospectively studied the brain MRIs of 66 pediatric patients with mitochondrial disorder with central nervous system involvement. Forty-one patients had an identified genetic etiology. A predominance of cerebrocortical lesions was mainly seen in patients with MELAS and Alpers syndrome. Basal ganglia were predominantly affected in patients with Leigh syndrome. All patients with leukoencephalopathy had pathological spectroscopy. Cerebrocortical atrophy with agenesis/atrophy of the corpus callosum was seen in patients with congenital lactic acidosis with or without pyruvate dehydrogenase complex deficiency. The diagnostic approach used in our study — from the neuroanatomical/neurofunctional lesion to disease identification — assists the physician in the use of brain neuroimaging early in the diagnostic work-up of suspected mitochondrial disorders.  相似文献   
103.
Chlorosomes, the antenna complexes of green bacteria, are unique antenna systems in which pigments are organized in aggregates. Studies on isolated chlorosomes from Chlorobaculum tepidum based on SDS-PAGE, immunoblotting and molecular biology have revealed that they contain ten chlorosomal proteins, but no comprehensive information is available about the protein composition of the entire organelle. To extend these studies, chlorosomes were isolated from C. tepidum using three related and one independent isolation protocol and characterized by absorption spectroscopy, tricine SDS-PAGE, dynamic light scattering (DLS) and electron microscopy. Tricine SDS-PAGE showed the presence of more than 20 proteins with molecular weights ranging between 6 and 70 kDa. The chlorosomes varied in size. Their hydrodynamic radius (R(h) ) ranged from 51 to 75 nm and electron microscopy indicated that they were on average 140 nm wide and 170 nm long. Furthermore, the mass of 184 whole chlorosome organelles determined by scanning transmission electron microscopy ranged from 27 to 237 MDa being on average 88 (±28) MDa. In contrast their mass-per-area was independent of their size, indicating that there is a strict limit to chlorosome thickness. The average protein composition of the C. tepidum chlorosome organelles was obtained by MS/MS-driven proteomics and for the first time a detailed protein catalogue of the isolated chlorosomal proteome is presented. Based on the proteomics results for chlorosomes isolated by different protocols, four proteins that are involved in the electron or ion transport are proposed to be tightly associated with or incorporated into C. tepidum chlorosomes as well as the ten Csm proteins known to date.  相似文献   
104.
The nicotinic acetylcholine receptor (AChR) is a ligand-gated ion channel found in muscles and neurons. Muscle AChR, formed by five homologous subunits (alpha2 beta gamma delta or alpha2 beta gamma epsilon), is the major antigen in the autoimmune disease, myasthenia gravis (MG), in which pathogenic autoantibodies bind to, and inactivate, the AChR. The extracellular domain (ECD) of the human muscle alpha subunit has been heterologously expressed and extensively studied. Our aim was to obtain satisfactory amounts of the ECDs of the non-alpha subunits of human muscle AChR for use as starting material for the determination of the 3D structure of the receptor ECDs and for the characterization of the specificities of antibodies in sera from patients with MG. We expressed the N-terminal ECDs of the beta (amino acids 1-221; beta1-221), gamma (amino acids 1-218; gamma1-218), and epsilon (amino acids 1-219; epsilon1-219) subunits of human muscle AChR in the yeast, Pichia pastoris. beta1-221 was expressed at approximately 2 mg.L(-1) culture, whereas gamma1-218 and epsilon1-219 were expressed at 0.3-0.8 mg.L(-1) culture. All three recombinant polypeptides were glycosylated and soluble; beta1-221 was mainly in an apparently dimeric form, whereas gamma1-218 and epsilon1-219 formed soluble oligomers. CD studies of beta1-221 suggested that it has considerable beta-sheet secondary structure with a proportion of alpha-helix. Conformation-dependent mAbs against the ECDs of the beta or gamma subunits specifically recognized beta1-221 or gamma1-218, respectively, and polyclonal rabbit antiserum raised against purified beta1-221 bound to (125)I-labeled alpha-bungarotoxin-labeled human AChR. Moreover, immobilization of each ECD on Sepharose beads and incubation of the ECD-Sepharose matrices with MG sera caused a significant reduction in the concentrations of autoantibodies in the sera, showing specific binding to the recombinant ECDs. These results suggest that the expressed proteins present some near-native conformational features and are thus suitable for our purposes.  相似文献   
105.
Chlorobium tepidum is a Gram-negative bacterium of the green sulfur phylum (Chlorobia). Chlorobia are obligate anaerobic photolithoautotrophs that are widely distributed in aquatic environments where anoxic layers containing reduced sulfur compounds are exposed to light. The envelope of C. tepidum is a complex organelle composed of the outer membrane, the periplasm–peptidoglycan layer, and the cytoplasmic membrane. In addition to the outer and plasma membranes, C. tepidum contains chlorosomes attached to the cytoplasmic side of the plasma membrane. Each cellular compartment has a unique set of proteins, called sub-proteome. An important aim of proteome analysis is to study the level of the expressed genes and their response to environmental changes. Membrane protein studies are of primary importance to understand how nutrients are transported inside the cell, how toxic molecules are exported, and the mechanisms of photosynthesis and energy metabolism.  相似文献   
106.
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.  相似文献   
107.
108.

Background  

Genome degradation is an ongoing process in all members of the Rickettsiales order, which makes these bacterial species an excellent model for studying reductive evolution through interspecies variation in genome size and gene content. In this study, we evaluated the degree to which gene loss shaped the content of some Rickettsiales genomes. We shed light on the role played by horizontal gene transfers in the genome evolution of Rickettsiales.  相似文献   
109.

Background

Osteoarthritis (OA) is a multi-factorial disease leading progressively to loss of articular cartilage and subsequently to loss of joint function. While hypertrophy of chondrocytes is a physiological process implicated in the longitudinal growth of long bones, hypertrophy-like alterations in chondrocytes play a major role in OA. We performed a quantitative proteomic analysis in osteoarthritic and normal chondrocytes followed by functional analyses to investigate proteome changes and molecular pathways involved in OA pathogenesis.

Methods

Chondrocytes were isolated from articular cartilage of ten patients with primary OA undergoing knee replacement surgery and six normal donors undergoing fracture repair surgery without history of joint disease and no OA clinical manifestations. We analyzed the proteome of chondrocytes using high resolution mass spectrometry and quantified it by label-free quantification and western blot analysis. We also used WebGestalt, a web-based enrichment tool for the functional annotation and pathway analysis of the differentially synthesized proteins, using the Wikipathways database. ClueGO, a Cytoscape plug-in, is also used to compare groups of proteins and to visualize the functionally organized Gene Ontology (GO) terms and pathways in the form of dynamical network structures.

Results

The proteomic analysis led to the identification of a total of ~2400 proteins. 269 of them showed differential synthesis levels between the two groups. Using functional annotation, we found that proteins belonging to pathways associated with regulation of the actin cytoskeleton, EGF/EGFR, TGF-β, MAPK signaling, integrin-mediated cell adhesion, and lipid metabolism were significantly enriched in the OA samples (p ≤10−5). We also observed that the proteins GSTP1, PLS3, MYOF, HSD17B12, PRDX2, APCS, PLA2G2A SERPINH1/HSP47 and MVP, show distinct synthesis levels, characteristic for OA or control chondrocytes.

Conclusion

In this study we compared the quantitative changes in proteins synthesized in osteoarthritic compared to normal chondrocytes. We identified several pathways and proteins to be associated with OA chondrocytes. This study provides evidence for further testing on the molecular mechanism of the disease and also propose proteins as candidate markers of OA chondrocyte phenotype.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9085-6) contains supplementary material, which is available to authorized users.  相似文献   
110.
Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently. Kalliopi Vasileiadou and Spiros Papakostas contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号