首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   15篇
  2023年   2篇
  2020年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   10篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   13篇
  2007年   11篇
  2006年   17篇
  2005年   10篇
  2004年   11篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   6篇
  1987年   7篇
  1986年   11篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1980年   2篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1968年   5篇
  1947年   2篇
  1912年   3篇
  1905年   1篇
  1903年   1篇
  1902年   1篇
  1900年   2篇
  1892年   1篇
  1890年   1篇
排序方式: 共有263条查询结果,搜索用时 62 毫秒
101.
We compared the antigen presenting ability of cloned thymic macrophage and epithelial cell lines using T cell hybridomas with well-characterized activation requirements. A cloned thymic epithelial cell line (3D.1), preinduced with interferon-gamma (IFN-gamma) activated the T cell hybridoma 3DO-18.3 but not the T cell hybridoma DO-11.10. Analyses using preprocessed antigen suggest that the failure of 3D.1 to activate DO-11.10 is due to its inability to process chicken ovalbumin to produce a peptide recognized by the Ag:MHC T cell receptor of DO-11.10. The epithelial cell line 3D.1 was able to activate DO-11.10 if the superantigen staphylococcal enterotoxin B was used for activation instead of ovalbumin. These observations indicate that IFN-gamma-induced 3D.1 expresses sufficient I-Ad molecules to activate DO-11.10 but is unable to produce the peptide of ovalbumin recognized by DO-11.10. Furthermore, 3D.1 appears to be representative of nonmacrophage thymic stromal cells cultured in vitro, since heterogeneous cultures containing epithelial cells exhibited the same selective T cell activation characteristics. In contrast, thymic macrophage cell lines activated all T cells studied. These results suggest that there is a functional difference between the capacity of thymic epithelial cells and macrophages to process and present antigen to T cells.  相似文献   
102.
A human BK-2 bradykinin receptor was cloned from the lung fibroblast cell line CCD-16Lu. The cDNA clone encodes a 364 amino acid protein that has the characteristics of a seven transmembrane domain G-protein coupled receptor. The predicted amino acid sequence of the human BK-2 receptor is 81% identical to the smooth muscle rat BK-2 receptor (1). Transfection of the human BK-2 receptor cDNA into COS-7 cells results in the expression of high levels of specific BK binding sites. Saturation binding analysis indicates that the human BK-2 receptor expressed in COS-7 cells binds BK with a KD of 0.13 nM. Pharmacological characterization of the expressed BK receptor is consistent with the cDNA encoding a receptor of the BK-2 subtype. The BK-2 receptor antagonist Hoe 140 (2), D-Arg0[Hyp3, Thi5, D-Tic7, Oic8]BK has a high affinity (IC50 = 65 pM) for the cloned human receptor. The tissue distribution of the human BK-2 receptor was analyzed by competitive PCR with human tissue cDNA and is similar to that determined for the BK-2 receptor in the rat.  相似文献   
103.
104.
The retinoids are a family of compounds that in nature are derived from vitamin A or pro‐vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep.

  相似文献   

105.
Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar‐horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) – all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well‐being. Only by so‐doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change.  相似文献   
106.
107.

Background  

The controlled beating of cilia of the fallopian tube plays an important role in facilitating the meeting of gametes and subsequently transporting the fertilized egg to its implantation site. Rapid effects of progesterone on ciliary beat frequency have been reported in the fallopian tubes of cows, but the identity of the receptors mediating this non-genomic action of progesterone is not known. We recently identified a member of the non-genomic membrane progesterone receptor family, mPR gamma, as a candidate for mediating these actions of progesterone. Here, we investigated the possible presence of a related receptor, mPR beta, in the fallopian tubes of mice and women as well as the possible hormonal regulation of mPR beta and gamma.  相似文献   
108.

Background  

SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies.  相似文献   
109.
Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号