首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   652篇
  免费   49篇
  701篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   7篇
  2015年   12篇
  2014年   19篇
  2013年   12篇
  2012年   30篇
  2011年   30篇
  2010年   17篇
  2009年   16篇
  2008年   17篇
  2007年   22篇
  2006年   17篇
  2005年   20篇
  2004年   19篇
  2003年   13篇
  2002年   19篇
  2001年   13篇
  2000年   11篇
  1999年   12篇
  1998年   10篇
  1997年   13篇
  1996年   7篇
  1993年   9篇
  1992年   12篇
  1991年   9篇
  1990年   16篇
  1989年   14篇
  1988年   13篇
  1987年   7篇
  1986年   10篇
  1985年   9篇
  1983年   5篇
  1982年   7篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1976年   7篇
  1960年   6篇
  1936年   11篇
  1935年   5篇
  1933年   8篇
  1932年   10篇
  1931年   10篇
  1929年   7篇
  1918年   4篇
  1910年   4篇
排序方式: 共有701条查询结果,搜索用时 0 毫秒
61.

Background

The spindle assembly checkpoint (SAC) delays anaphase onset by inhibiting the activity of the anaphase promoting complex/cyclosome (APC/C) until all of the kinetochores have properly attached to the spindle. The importance of SAC genes for genome stability is well established; however, the roles these genes play, during postembryonic development of a multicellular organism, remain largely unexplored.

Results

We have used GFP fusions of 5' upstream intergenic regulatory sequences to assay spatiotemporal expression patterns of eight conserved genes implicated in the spindle assembly checkpoint function in Caenorhabditis elegans. We have shown that regulatory sequences for all of the SAC genes drive ubiquitous GFP expression during early embryonic development. However, postembryonic spatial analysis revealed distinct, tissue-specific expression of SAC genes with striking co-expression in seam cells, as well as in the gut. Additionally, we show that the absence of MDF-2/Mad2 (one of the checkpoint genes) leads to aberrant number and alignment of seam cell nuclei, defects mainly attributed to abnormal postembryonic cell proliferation. Furthermore, we show that these defects are completely rescued by fzy-1(h1983)/CDC20, suggesting that regulation of the APC/CCDC20 by the SAC component MDF-2 is important for proper postembryonic cell proliferation.

Conclusion

Our results indicate that SAC genes display different tissue-specific expression patterns during postembryonic development in C. elegans with significant co-expression in hypodermal seam cells and gut cells, suggesting that these genes have distinct as well as overlapping roles in postembryonic development that may or may not be related to their established roles in mitosis. Furthermore, we provide evidence, by monitoring seam cell lineage, that one of the checkpoint genes is required for proper postembryonic cell proliferation. Importantly, our research provides the first evidence that postembryonic cell division is more sensitive to SAC loss, in particular MDF-2 loss, than embryonic cell division.  相似文献   
62.
63.
64.
65.
66.
Plasma angiotensin levels were measured for the first time in a cyclostome, the river lamprey. With the demonstration that angiotensins are present in the circulation, the possibility of a physiological role in the regulation of drinking was re-examined. Angiotensin II and III concentrations and plasma osmolalities were significantly higher in lampreys acclimated to 28 ppt seawater than in those acclimated to freshwater. No changes were found in angiotensin II and III levels 4 h after transfer from freshwater to 50% seawater, although plasma osmolality had started to rise by this time. There was a suggestion that plasma angiotensin II levels might be related to osmolality in the transfer experiment. Injection of Asp(1)Val(5)- or Asn(1)Val(5)-angiotensin II (40-169 microg/kg body wt.) did not stimulate drinking in freshwater-acclimated lampreys, even when they were still capable of drinking. The angiotensin-converting enzyme inhibitor captopril and the smooth muscle relaxant papaverine both reduced drinking rate in 50% seawater-acclimated lampreys. The data do not provide direct evidence for the involvement of the renin-angiotensin system in the control of drinking behaviour in the lamprey. Indirect evidence from the captopril effect is suggestive, but could have other explanations.  相似文献   
67.
Transforming growth factor (TGF)-beta promotes breast cancer metastasis to bone. To determine whether the osteolytic factor parathyroid hormone-related protein (PTHrP) is the primary mediator of the tumor response to TGF-beta, mice were inoculated with MDA-MB-231 breast cancer cells expressing a constitutively active TGF-beta type I receptor. Treatment of the mice with a PTHrP-neutralizing antibody greatly decreased osteolytic bone metastases. There were fewer osteoclasts and significantly decreased tumor area in the antibody-treated mice. TGF-beta can signal through both Smad and mitogen-activated protein (MAP) kinase pathways. Stable transfection of wild-type Smad2, Smad3, or Smad4 increased TGF-beta-stimulated PTHrP secretion, whereas dominant-negative Smad2, Smad3, or Smad4 only partially reduced TGF-beta-stimulated PTHrP secretion. When the cells were treated with a variety of protein kinases inhibitors, only specific inhibitors of the p38 MAP kinase pathway significantly reduced both basal and TGF-beta-stimulated PTHrP production. The combination of Smad dominant-negative blockade and p38 MAP kinase inhibition resulted in complete inhibition of TGF-beta-stimulated PTHrP production. Furthermore, TGF-beta treatment of MDA-MB-231 cells resulted in a rapid phosphorylation of p38 MAP kinase. Thus, the p38 MAP kinase pathway appears to be a major component of Smad-independent signaling by TGF-beta and may provide a new molecular target for anti-osteolytic therapy.  相似文献   
68.
69.
70.
Cilia in many organisms undergo a phenomenon called ciliary reversal during which the cilia reverse the beat direction, and the cell swims backwards. Ciliary reversal is typically caused by a depolarizing stimulus that ultimately leads to a rise in intraciliary Ca++ levels. It is this increase in intraciliary Ca++ that triggers ciliary reversal. However, the mechanism by which an increase in intraciliary Ca++ causes ciliary reversal is not known. We have previously mutated the DYH6 gene of Tetrahymena thermophila by targeted gene knockout and shown that the knockout mutants (KO6 mutants) are missing inner arm dynein 1 (I1). In this study, we show that KO6 mutants do not swim backward in response to depolarizing stimuli. In addition to being unable to swim backwards, KO6 mutants swim forward at approximately one half the velocity of wild-type cells. However, the ciliary beat frequency in KO6 mutants is indistinguishable from that of wild-type cells, suggesting that the slow forward swimming of KO6 mutants is caused by an altered waveform rather than an altered beat frequency. Live KO6 cells are also able to increase and decrease their swim speeds in response to stimuli, suggesting that some aspects of their swim speed regulation mechanisms are intact. Detergent-permeabilized KO6 mutants fail to undergo Ca++-dependent ciliary reversals and do not show Ca++-dependent changes in swim speed after MgATP reactivation, indicating that the axonemal machinery required for these responses is insensitive to Ca++ in KO6 mutants. We conclude that Tetrahymena inner arm dynein 1 is not only an essential part of the Ca++-dependent ciliary reversal mechanism but it also may contribute to Ca++-dependent changes in swim speed and to the formation of normal waveform during forward swimming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号