首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   7篇
  国内免费   1篇
  111篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
61.
Abstract Culture, enzyme immunoassay (Chlamydiazyme™) and nucleic acid sandwich hybridization were compared in detecting Chlamydia trachomatis in uncomplicated genital tract infections. Urethral and cervical specimens were collected from 100 males and 100 females attending a sexually transmitted disease clinic. Chlamydial culture was performed under optimal conditions (duplicate inoculation within the day specimen was collected, culture in vials, monoclonal antibody staining of inclusions, blind passage for negative samples). Here the sensitivity of culture exceeded that of the rapid methods. The sensitivity of a chlamydial antigen detection method (Chlamydiazyme™) was 68% in male and 86% in female specimens, when compared with culture, and the specificity was 100% and 97%, respectively. Acinetobacter calcoace9icus present in clinical specimens did not interfere with Chlamydiazyme™. The sensitivity of the nucleic acid sandwich hybridization was 53% of that of the culture, and specificity 100%. By comparing the three methods it was apparent that the rapid methods did not reveal chlamydial infections not detectable by culture. Thus, if performed carefully, culture is the most sensitive diagnostic method in acute genital infections due to C. trachomatis .  相似文献   
62.
63.
α-Amylase activities in extracts of different parts of barley grain (Hordeum vulgare L. cv Himalaya) were low after 1 day of germination at 20°C, but they began to increase afterwards. In the scutellum and the aleurone layer, the increases were small, but in the starchy endosperm a great increase took place between days 1 and 6.

When the aleurone layers were separated from germinating whole grains and incubated in 10 millimolar CaCl2, the α-amylase activity in the medium increased linearly for about 30 to 60 minutes, indicating secretion. The activity inside the aleurone layer decreased only slightly during the incubation, indicating that secretion of α-amylase was accompanied by synthesis. The rates of secretion in vitro by the aleurone layers separated at different stages of germination corresponded rather well to the rate of accumulation of α-amylase activity in the starchy endosperm in a whole grain.

Scutella separated after 1 day of germination released small amounts of α-amylase activity into 10 millimolar CaCl2. This release was linear for at least 1 hour and did not occur at 0°C; it is therefore likely to be due to secretion. At later stages of germination, the secretion by the scutella was slower than at day 1 and the total secretion accounted for only 5 to 10% of the increase of α-amylase activity in the starchy endosperm in a whole grain.

Since the times from the separation of the parts of the grain to the beginning of the secretion assay (10-40 minutes) as well as the duration of the assay itself (20-60 minutes) were short, the rates of secretion by the separated grain parts are likely to represent those in an intact grain. The results indicate therefore that at least in the conditions used the bulk of the total α-amylase in the starchy endosperm is secreted by the aleurone layer, the contribution by the scutellum being only 5 to 10% of the total activity.

  相似文献   
64.
Polar solvents induce terminal differentiation in the human promyelocytic leukemia cell line HL-60. The present studies describe the functional changes that accompany the morphologic progression from promyelocytes to bands and poly-morphonuclear leukocytes (PMN) over 9 d of culture in 1.3 percent dimethylsulfoxide (DMSO). As the HL-60 cells mature, the rate of O(2-) production increase 18-fold, with a progressive shortening of the lag time required for activation. Hexosemonophosphate shunt activity rises concomitantly. Ingestin of paraffin oil droplets opsonized with complement or Ig increases 10-fold over 9 d in DMSO. Latex ingestion per cell by each morphologic type does not change significantly, but total latex ingestion by groups of cells increases with the rise in the proportion of mature cells with greater ingestion capacities. Degranulation, as measured by release of β-glucuronidase, lysozyme, and peroxidase, reaches maximum after 3-6 d in DMSO, then declines. HL-60 cells contain no detectable lactoferrin, suggesting that their secondary granules are absent or defective. However, they kill staphylococci by day 6 in DMSO. Morphologically immature cells (days 1-3 in DMSO) are capable of O(2-) generation, hexosemonophosphate shunt activity, ingestion, degranulation, and bacterial killing. Maximal performance of each function by cells incubated in DMSO for longer periods of time is 50-100 percent that of normal PMN. DMSO- induced differentiation of HL-60 cells is a promising model for myeloid development.  相似文献   
65.
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.  相似文献   
66.
67.
When cells are stimulated to move, for instance during development, wound healing or angiogenesis, they undergo changes in the turnover of their cell-matrix adhesions. This is often accompanied by alterations in the expression profile of integrins—the extracellular matrix receptors that mediate anchorage within these adhesions. Here, we discuss how a shift in expression between two different types of integrins that bind fibronectin can have dramatic consequences for cell-matrix adhesion dynamics and cell motility.Key words: integrin, fibronectin, migration, cytoskeleton, dynamicsCells attach to the extracellular matrix (ECM) that surrounds them in specialized structures termed “cell-matrix adhesions.” These come in different flavors including “focal complexes” (small adhesions found in membrane protrusions of spreading and migrating cells), “focal adhesions” (larger adhesions connected by F-actin stress fibers that are derived from focal complexes in response to tension), “fibrillar adhesions” (elongated adhesions associated with fibronectin matrix assembly), and proteolytically active adhesions termed “podosomes” or “invadopodia” found in osteoclasts, macrophages and certain cancer cells. Common to all these structures is the local connection between ECM proteins outside- and the actin cytoskeleton within the cell through integrin transmembrane receptors. The intracellular linkage to filamentous actin is indirect through proteins that concentrate in cell-matrix adhesions such as talin, vinculin, tensin, parvins and others.1Cell migration is essential for embryonic development and a number of processes in the adult, including immune cell homing, wound healing, angiogenesis and cancer metastasis. In moving cells, cell-matrix adhesion turnover is spatiotemporally controlled.2 New adhesions are made in the front and disassembled in the rear of cells that move along a gradient of motogenic factors or ECM proteins. This balance between formation and breakdown of cell-matrix adhesions is important for optimal cell migration. Several mechanisms regulate the turnover of cell-matrix adhesions. Proteolytic cleavage of talin has been identified as an important step in cell-matrix adhesion disassembly3 and FAK and Src family kinases are required for cell-matrix adhesion turnover and efficient cell migration.4,5 Besides regulating phospho-tyrosine-mediated protein-protein interactions within cell-matrix adhesions, the FAK/Src complex mediates signaling downstream of integrins to Rho GTPases, thus controlling cytoskeletal organization.6,7 The transition from a stationary to a motile state could involve (local) activation of such mechanisms.Interestingly, conditions of increased cell migration (development, wound healing, angiogenesis, cancer metastasis) are accompanied by shifts in integrin expression with certain integrins being lost and others gained. Most ECM proteins can be recognized by various different integrins. For instance, the ECM protein, fibronectin (Fn) can be recognized by nine different types of integrins and most of these bind to the Arg-Gly-Asp (RGD) motif in the central cell-binding domain. Thus, cell-matrix adhesions formed on Fn contain a mixture of different integrins and shifts in expression from one class of Fn-binding integrins to another will alter the receptor composition of such adhesions. This may provide an alternative means to shift from stationary to motile.Indeed, we have found that the type of integrins used for binding to Fn strongly affects cell migration. We made use of cells deficient in certain Fn-binding integrins and either restored their expression or compensated for their absence by overexpression of alternative Fn-binding integrins. This allowed us to compare in a single cellular background cell-matrix adhesions containing α5β1 to those containing αvβ3. Despite the fact that these integrins support similar levels of adhesion to Fn, only α5β1 was found to promote a contractile, fibroblastic morphology with centripetal orientation of cell-matrix adhesions8 (Fig. 1). Moreover, RhoA activity is high in the presence of α5β1 and these cells move in a random fashion with a speed of around 25 mm/h. By contrast, in cells using αvβ3 instead, adhesions distribute across the ventral surface, RhoA activity is low, and these cells move with similar speed but in a highly persistent fashion.8,9 Finally, photobleaching experiments using GFP-vinculin and GFP-paxillin demonstrated that cell-matrix adhesions containing α5β1 are highly dynamic whereas adhesions containing αvβ3 are more static.9Open in a separate windowFigure 1Immunofluorescence images. GE11 cells, epithelial β1 knockout cells derived from mouse embryos chimeric for the integrin β1 subunit endogenously express various av integrins, including low levels of αvβ3 and αvβ5. Ectopic expression of β1 leads to expression of α5β1 and induced α5β1-mediated adhesion to Fn (left image) whereas ectopic expression of β3 (in the β1 null background) leads to strong expression of αvβ3 and induced αvβ3-mediated adhesion to Fn (right image). Adhesions containing either α5β1 or αvβ3 show distinct distribution and dynamics (paxillin; green) and cause different F-actin organization (phalloidin; red). Cartoons: Differences in cell-matrix adhesion dynamics may be explained by differential binding of soluble Fn molecules (blue) or different molecular determinants of the interaction with immobilized Fn (red). See text for details.It has been observed that α5β1 and αvβ3 use different recycling routes. Interfering with Rab4-mediated recycling of αvβ3 causes increased Rab11-mediated recycling of α5β1 to the cell surface. In agreement with our findings, the shift to α5β1 leads to increased Rho-ROCK activity and reduced persistence of migration.10 One possible explanation for the different types of migration promoted by these two Fn-binding integrins might involve different signaling and/or adaptor proteins interacting with specific amino acids in their cytoplasmic tails. However, this appears not to be the case: α5β1 in which the cytoplasmic tails of α5 or β1 are replaced by those of αv or β3, respectively, behaves identical to wild type α5β1: it promotes a fibroblast-like morphology with centripetal orientation of cell-matrix adhesions and it drives a non-persistent mode of migration.8,11 Together, these findings point to differences between α5β1 and αvβ3 integrins in the mechanics of their interaction with Fn, which apparently modulates intracellular signaling pathways in control of cell-matrix adhesion dynamics and cell migration.How might this work? It turns out that although α5β1 and αvβ3 similarly support cell adhesion to immobilized (stretched) Fn, only α5β1 efficiently binds soluble, folded (“inactive”) Fn.11 We have proposed that such interactions with soluble Fn molecules (possibly secreted by the cell itself) may weaken the interaction with the immobilized ligand thereby causing enhanced cell-matrix adhesion dynamics in the presence of α5β1,11 (Fig. 1). Preferential binding of soluble Fn by α5β1 could be explained by differences in accessibility of the RGD binding pocket between α5β1 (more exposed) and αvβ3 (more hidden) as suggested by others.12 If this is the case, immobilization (“stretching”) of Fn apparently leads to reorientation of the RGD motif in such a way that it is easily accessed by both integrins.The issue is considerably complicated by the fact that other recognition motifs are present in the Fn central cell-binding domain. In addition to the RGD sequence in the tenth Fn type 3 repeat (IIIFn10), binding of α5β1, but not αvβ3, also depends on the PHSRN “synergy” sequence in IIIFn9.1315 The relative contribution of these motifs is controversial and there is structural data pointing either towards a model in which IIIFn9 interacts with α5β1 or towards a model in which IIIFn9 exerts long-range electrostatic steering resulting in a higher affinity interaction without contacting the integrin.16,17 Cell adhesion studies have suggested that an interaction of α5β1 with the synergy region stabilizes the binding to RGD.14,18 Such a two-step interaction may facilitate binding to full length, folded Fn for instance by altering the tilt angle between IIIFn9 and IIIFn10 leading to optimal exposure of the RGD loop, perhaps explaining why αvβ3 (which may not interact with the synergy site) poorly binds soluble Fn.Others have shown that the RGD motif alone is sufficient for mechanical coupling of αvβ3 to Fn whereas the synergy region is required to provide mechanical strength to the α5β1-Fn bond.19 It appears that the interaction of α5β1 with Fn is particularly dynamic with various conformations of α5β1 interacting with different Fn binding surfaces, including the RGD and synergy sequences as well as other regions in IIIFn9. Thus, besides the above model based on differential binding to soluble Fn molecules, differences in the complexity and dynamics of interactions with immobilized Fn that determine functional binding strength could also underlie the different dynamics of cell-matrix adhesions containing either α5β1 or αvβ3 (Fig. 1).Precisely how mechanical differences in receptor-ligand interactions result in such remarkably distinct cellular responses is poorly understood. In addition to effects on cell-matrix adhesion dynamics and cytoskeletal organization it is also associated with different activities of Rho GTPases, indicating that mechanical differences between these two integrins must translate into differential activation of intracellular signaling pathways.8,9,11 Possibly, different adhesion dynamics due to distinct mechanisms of receptor-ligand interaction result in different patterns of F-actin organization, which, in turn, affects the formation of signaling platforms. It is also possible that differences in the extent of integrin clustering have an impact on the conformation of one or more cytoplasmic components of the cell-matrix adhesions containing either α5β1 or αvβ3. This could lead to hiding or exposing binding sites for signaling molecules (e.g., upstream regulators of Rho GTPases) or substrates. Whatever the mechanism involved, altering the integrin composition of cell-matrix adhesions through shifts in integrin expression as observed during development, angiogenesis, wound healing and cancer progression may be a driving force in the enhanced cell migration that characterizes those processes.  相似文献   
68.
69.
In a simulation study, different designs were compared for efficiency of fine-mapping of QTL. The variance component method for fine-mapping of QTL was used to estimate QTL position and variance components. The design of many families with small size gave a higher mapping resolution than a design with few families of large size. However, the difference is small in half sib designs. The proportion of replicates with the QTL positioned within 3 cM of the true position is 0.71 in the best design, and 0.68 in the worst design applied to 128 animals with a phenotypic record and a QTL explaining 25% of the phenotypic variance. The design of two half sib families each of size 64 was further investigated for a hypothetical population with effective size of 1000 simulated for 6000 generations with a marker density of 0.25 cM and with marker mutation rate 4 × 10-4 per generation. In mapping using bi-allelic markers, 42~55% of replicated simulations could position QTL within 0.75 cM of the true position whereas this was higher for multi allelic markers (48~76%). The accuracy was lowest (48%) when mutation age was 100 generations and increased to 68% and 76% for mutation ages of 200 and 500 generations, respectively, after which it was about 70% for mutation ages of 1000 generations and older. When effective size was linearly decreasing in the last 50 generations, the accuracy was decreased (56 to 70%). We show that half sib designs that have often been used for linkage mapping can have sufficient information for fine-mapping of QTL. It is suggested that the same design with the same animals for linkage mapping should be used for fine-mapping so gene mapping can be cost effective in livestock populations.  相似文献   
70.
BACKGROUND: The DUET Study is a multicenter prospective efficacy and safety evaluation of the ACS MULTI-LINK DUET coronary stainless steel balloon-expandable stent. AIMS: The primary objective was to determine the one-month incidence of MACE (major adverse cardiac events). The secondary objectives were the acute success rate, the restenosis and reocclusion rates (assessed by quantitative coronary angiography (QCA)) at six months and the occurrence of MACE in hospital and at six months. METHODS: Two hundred and ten patients were enrolled between February and June 1998 in 18 European centers. Successful stent placement was achieved in 209 patients. All patients were treated with ticlopidine 500 mg/day for one month and with aspirin >/=100 mg/day. To allow the investigators to gain familiarity with the stent system, the first one to three patients per center formed a separate lead-in population leaving an intention-to-treat population of 157 patients. The majority of the intention-to-treat population were male (79%); 28% had unstable angina, 69% had stable angina, 44% had had a previous myocardial infarction, 15% had had a previous percutaneous transluminal coronary angioplasty, and 3% had a history of stroke. The target vessel was 38.5% left anterior descending artery, 20.5% left circumflex artery and 41.0% right coronary artery. RESULTS: All but one of the intention-to-treat patients were effectively stented (17 required multiple stents). Six-month angiographic follow-up was available in 90% of the intention-to-treat population. Minimal lumen diameter (MLD) postprocedure was 2.61 +/- 0.33 mm, with a residual diameter stenosis of 16%. Six-month follow-up data showed an MLD of 1.87 +/- 0.56 mm with a residual diameter stenosis of 36%. The binary restenosis rate (>/=50% residual stenosis) was 15.6%. Up to one month following the procedure 94.9% of the population was MACE-free, with two subacute occlusions. At six months all patients were alive, of whom 82.8% were MACE-free, and 73% were free of anginal complaints. CONCLUSION: The results observed in the current DUET registry are comparable to data of other balloon-expandable-stent trials, with a low incidence of clinical events at follow-up.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号