首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   7篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
61.
It is commonly assumed that creatine kinase (CK) activity in plasma is related to the state of an inflammatory response at 24-48 h, and also it has shown biphasic patterns after a marathon run. No information is available on CK isoenzymes after an ultra-marathon run. The purpose of the present study is to examine the CK isoenzymes after a 200 km ultra-marathon run and during the subsequent recovery. Blood samples were obtained during registration 1 2 h before the 200-km race and during the race at 100 km, 150 km and at the end of 200 km, as well as after a 24 h period of recovery. Thirty-two male ultra-distance runners participated in the study. Serum CPK showed a marked increase throughout the race and 24 h recovery period (p < 0.001). Serum CK during the race occurs mostly in the CK-MM isoform and only minutely in the CK-MB isoform and is unchanged in the CK-BB isoform. High-sensitivity C-reactive protein (hs-CRP), oestradiol, AST and ALT increased significantly from the pre-race value at 100 km and a further increase took place by the end of the 200 km run. The results of our study demonstrate a different release pattern of creatine kinase after an ultra-distance (200 km) run compared to the studies of marathon running and intense eccentric exercise, and changes in several biomarkers, indicative of muscle damage during the race, were much more pronounced during the latter half (100–200 km) of the race. However, the increases in plasma concentration of muscle enzymes may reflect not only structural damage, but also their rate of clearance.  相似文献   
62.
The etiology of primary cutaneous T-cell lymphomas (CTCL) has been poorly understood. CTCL patients show a large variety of non-clonal and clonal chromosome aberrations, but no specific aberration has been found until recently. This review describes cytogenetic and molecular cytogenetic findings and their relevance to diagnostics and etiology in two of the most common forms of CTCL, mycosis fungoides (MF) and the leukemic CTCL, Sézary syndrome (SS).  相似文献   
63.
Abstract Culture, enzyme immunoassay (Chlamydiazyme™) and nucleic acid sandwich hybridization were compared in detecting Chlamydia trachomatis in uncomplicated genital tract infections. Urethral and cervical specimens were collected from 100 males and 100 females attending a sexually transmitted disease clinic. Chlamydial culture was performed under optimal conditions (duplicate inoculation within the day specimen was collected, culture in vials, monoclonal antibody staining of inclusions, blind passage for negative samples). Here the sensitivity of culture exceeded that of the rapid methods. The sensitivity of a chlamydial antigen detection method (Chlamydiazyme™) was 68% in male and 86% in female specimens, when compared with culture, and the specificity was 100% and 97%, respectively. Acinetobacter calcoace9icus present in clinical specimens did not interfere with Chlamydiazyme™. The sensitivity of the nucleic acid sandwich hybridization was 53% of that of the culture, and specificity 100%. By comparing the three methods it was apparent that the rapid methods did not reveal chlamydial infections not detectable by culture. Thus, if performed carefully, culture is the most sensitive diagnostic method in acute genital infections due to C. trachomatis .  相似文献   
64.
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.  相似文献   
65.
66.
67.

Background

Efficient, robust, and accurate genotype imputation algorithms make large-scale application of genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all pedigree, genomic, and phenotypic information into a single-stage genomic evaluation.

Methods

An algorithm was developed for imputation of genotypes in pedigreed populations that allows imputation for completely ungenotyped animals and for low-density genotyped animals, accommodates a wide variety of pedigree structures for genotyped animals, imputes unmapped SNP, and works for large datasets. The method involves simple phasing rules, long-range phasing and haplotype library imputation and segregation analysis.

Results

Imputation accuracy was high and computational cost was feasible for datasets with pedigrees of up to 25 000 animals. The resulting single-stage genomic evaluation increased the accuracy of estimated genomic breeding values compared to a scenario in which phenotypes on relatives that were not genotyped were ignored.

Conclusions

The developed imputation algorithm and software and the resulting single-stage genomic evaluation method provide powerful new ways to exploit imputation and to obtain more accurate genetic evaluations.  相似文献   
68.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   
69.

Background

Genomic predictions can be applied early in life without impacting selection candidates. This is especially useful for meat quality traits in sheep. Carcass and novel meat quality traits were predicted in a multi-breed sheep population that included Merino, Border Leicester, Polled Dorset and White Suffolk sheep and their crosses.

Methods

Prediction of breeding values by best linear unbiased prediction (BLUP) based on pedigree information was compared to prediction based on genomic BLUP (GBLUP) and a Bayesian prediction method (BayesR). Cross-validation of predictions across sire families was used to evaluate the accuracy of predictions based on the correlation of predicted and observed values and the regression of observed on predicted values was used to evaluate bias of methods. Accuracies and regression coefficients were calculated using either phenotypes or adjusted phenotypes as observed variables.

Results and conclusions

Genomic methods increased the accuracy of predicted breeding values to on average 0.2 across traits (range 0.07 to 0.31), compared to an average accuracy of 0.09 for pedigree-based BLUP. However, for some traits with smaller reference population size, there was no increase in accuracy or it was small. No clear differences in accuracy were observed between GBLUP and BayesR. The regression of phenotypes on breeding values was close to 1 for all methods, indicating little bias, except for GBLUP and adjusted phenotypes (regression = 0.78). Accuracies calculated with adjusted (for fixed effects) phenotypes were less variable than accuracies based on unadjusted phenotypes, indicating that fixed effects influence the latter. Increasing the reference population size increased accuracy, indicating that adding more records will be beneficial. For the Merino, Polled Dorset and White Suffolk breeds, accuracies were greater than for the Border Leicester breed due to the smaller sample size and limited across-breed prediction. BayesR detected only a few large marker effects but one region on chromosome 6 was associated with large effects for several traits. Cross-validation produced very similar variability of accuracy and regression coefficients for BLUP, GBLUP and BayesR, showing that this variability is not a property of genomic methods alone. Our results show that genomic selection for novel difficult-to-measure traits is a feasible strategy to achieve increased genetic gain.  相似文献   
70.
The regulation of the C/EBP family in macrophages by LPS and cytokines is of potentially crucial importance in several pathophysiological conditions. The action of LPS and three cytokines on the expression of C/EBP mRNA, protein and functional DNA binding activity in the murine J774.2 cell line was therefore studied. Exposure of the cells to LPS, IL-1, IFN-gamma and TNF-alpha produced a reduction of C/EBP alpha mRNA levels and a corresponding increase in the expression of C/EBP beta and C/EBP delta. EMSA showed time-dependent changes in the DNA binding activity of individual C/EBP isoforms and demonstrated the participation of heterodimers between the different members in DNA-protein interactions. Additionally, mediator-specific changes in the kinetics and magnitude of C/EBP mRNA expression pattern and profile of DNA-protein interactions were observed. These studies provide novel insights into the potential mechanisms that may be responsible for the mediator-specific regulation of macrophage gene expression through the C/EBP family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号