首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18632篇
  免费   949篇
  国内免费   27篇
  2023年   160篇
  2022年   320篇
  2021年   711篇
  2020年   417篇
  2019年   446篇
  2018年   648篇
  2017年   606篇
  2016年   795篇
  2015年   897篇
  2014年   1141篇
  2013年   1561篇
  2012年   1649篇
  2011年   1461篇
  2010年   842篇
  2009年   741篇
  2008年   860篇
  2007年   830篇
  2006年   696篇
  2005年   627篇
  2004年   514篇
  2003年   425篇
  2002年   378篇
  2001年   307篇
  2000年   279篇
  1999年   256篇
  1998年   102篇
  1997年   76篇
  1996年   83篇
  1995年   80篇
  1994年   59篇
  1993年   57篇
  1992年   153篇
  1991年   143篇
  1990年   114篇
  1989年   85篇
  1988年   126篇
  1987年   98篇
  1986年   80篇
  1985年   81篇
  1984年   83篇
  1983年   47篇
  1982年   40篇
  1981年   48篇
  1980年   43篇
  1979年   56篇
  1978年   36篇
  1977年   43篇
  1976年   33篇
  1975年   29篇
  1974年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The human gut harbors diverse bacterial species in the gut, which play an important role in the metabolism of food and host health. Recent studies have also revealed their role in altering the pharmacological properties and efficacy of oral drugs through promiscuous metabolism. However, the atomistic details of the enzyme-drug interactions of gut bacterial enzymes which can potentially carry out the metabolism of drug molecules are still scarce. A well-known example is the FDA drug amphetamine (a central nervous system stimulant), which has been predicted to undergo promiscuous metabolism by gut bacteria. Therefore, to understand the atomistic details and energy landscape of the gut microbial enzyme-mediated metabolism of this drug, molecular dynamics studies were performed. It was observed that amphetamine binds to tyramine oxidase from the Escherichia coli strain present in the human gut microbiota at the binding site harboring polar and nonpolar amino acids. The stability analysis of amphetamine at the binding site showed that the binding is stable and the free energy for the binding of amphetamine was found to be ~ −51.71 kJ/mol. The insights provided by this study on promiscuous metabolism of amphetamine by a gut enzyme will be very useful to improve the efficacy of the drug.  相似文献   
942.
M24B peptidases cleaving Xaa-Pro bond in dipeptides are prolidases whereas those cleaving this bond in longer peptides are aminopeptidases-P. Bacteria have small aminopeptidases-P (36-39 kDa), which are diverged from canonical aminopeptidase-P of Escherichia coli (50 kDa). Structure-function studies of small aminopeptidases-P are lacking. We report crystal structures of small aminopeptidases-P from E. coli and Deinococcus radiodurans, and report substrate-specificities of these proteins and their ortholog from Mycobacterium tuberculosis. These are aminopeptidases-P, structurally close to small prolidases except for absence of dipeptide-selectivity loop. We noticed absence of this loop and conserved arginine in canonical archaeal prolidase (Maher et al., Biochemistry. 43, 2004, 2771-2783) and questioned its classification. Our enzymatic assays show that this enzyme is an aminopeptidase-P. Further, our mutagenesis studies illuminate importance of DXRY sequence motif in bacterial small aminopeptidases-P and suggest common evolutionary origin with human XPNPEP1/XPNPEP2. Our analyses reveal sequence/structural features distinguishing small aminopeptidases-P from other M24B peptidases.  相似文献   
943.
Type Three Secretion Systems (T3SS) from many gram-negative bacteria utilize ATPases for the translocation of effector proteins into the eukaryotic host cells through injectisome. Cytosolic regulators effectively control the action of these ATPases. PscN from Pseudomonas aeruginosa was an ATPase which was regulated by an uncharacterized PscL. Here we have bioinformatically, biochemically, and biophysically characterized PscN as a T3SS ATPase and PscL as its regulator. In solution, PscN exists predominantly as oligomer and hydrolyzes ATP with Vmax of 3.9 ± 0.2 μmol/min/mg and K m 0.93 ± 0.06 mM. Hexameric structure of PscN was observed under AFM and TEM in the presence of ATP. PscL was dimeric in solution and interacted with PscN strongly in Ni-NTA pull-down assay and SPR analysis. PscL was shown to downregulate PscN ATPase activity up to 80% when mixed with PscN in 1:2 ratio (PscN:PscL). SEC data reconfirm the PscN–PscL interaction stoichiometry (ie, 1:2 ratio) which can also be visualized under AFM. In the present study, we have also found out the existence of an oligomeric form of the PscN–PscL heterotrimeric complex. PscL being the regulator of PscN and interacts to form this conformation, which may play an important role too in the regulation of T3SS utilized by Pseudomonas aeruginosa. For structural aspect, three dimensional in silico models of PscN, PscL, and PscN–PscL were generated. So, in short, present study tried to enlighten both the structural, functional and mechanistic insights into the action of PscN–PscL complex in T3SS mediated pathogenic pathway.  相似文献   
944.
A Monte Carlo simulation based sequence design method is proposed to investigate the role of site-directed point mutations in protein misfolding. Site-directed point mutations are incorporated in the designed sequences of selected proteins. While most mutated sequences correctly fold to their native conformation, some of them stabilize in other nonnative conformations and thus misfold/unfold. The results suggest that a critical number of hydrophobic amino acid residues must be present in the core of the correctly folded proteins, whereas proteins misfold/unfold if this number of hydrophobic residues falls below the critical limit. A protein can accommodate only a particular number of hydrophobic residues at the surface, provided a large number of hydrophilic residues are present at the surface and critical hydrophobicity of the core is preserved. Some surface sites are observed to be equally sensitive toward site-directed point mutations as the core sites. Point mutations with highly polar and charged amino acids increases the misfold/unfold propensity of proteins. Substitution of natural amino acids at sites with different number of nonbonded contacts suggests that both amino acid identity and its respective site-specificity determine the stability of a protein. A clash-match method is developed to calculate the number of matching and clashing interactions in the mutated protein sequences. While misfolded/unfolded sequences have a higher number of clashing and a lower number of matching interactions, the correctly folded sequences have a lower number of clashing and a higher number of matching interactions. These results are valid for different SCOP classes of proteins.  相似文献   
945.
946.
Background:This study correlates the serum levels of sCD95 & TNF-α with a simple cell-based assay to evaluate the capacity of the serum sample to induce apoptosis in Jurkat cells. Interlinking of these parameters can be explored to design a minimum invasive diagnostic strategy for cervical cancer (CC).Methods:Sera samples were assessed to induce apoptosis in Jurkat cells through FACS. Serum levels of sCD95 and TNF-α were measured by ELISA. JNK phosphorylation was evaluated in sera incubated Jurkat cells. Data was scrutinized through statistical analysis.Results:Significantly higher serum levels of sCD95 and lower TNF-α levels were observed in CC patients; their sera samples inhibited induction of apoptosis in Jurkat cells through reduced JNK phosphorylation. Statistical analysis linked these three parameters for the early screening of CC.Conclusion:Distinct sera levels of sCD95 & TNF-α in CC patients showed an anti-apoptotic effect, which can be considered for early detection of CC.Key Words: Apoptosis, sCD95, Jurkat Cells, Tumor Necrosis Factor-alpha, Uterine Cervical Neoplasms  相似文献   
947.
Following acute sciatic nerve crush injury (SNCI), inflammation and the improper phagocytic clearance of dying Schwann cells (SCs) has effects on remodeling that lead to morbidity and incomplete functional recovery. Therapeutic strategies like the use of erythropoietin (EPO) for peripheral nerve trauma may serve to bring immune cell phagocytotic clearance under control to support debris clearance. We evaluated EPO’s effect on SNCI and found EPO treatment increased myelination and sciatic functional index (SFI) and bolstered anti-apoptosis and phagocytosis of myelin debris via CD206+ macrophages when compared to saline treatment. EPO enhanced M2 phenotype activity, both in bone marrow-derived macrophages (BMMØs) and peritoneal-derived macrophages (PMØs) in vitro, as well as in PMØs in vivo. EPO increased efferocytosis of apoptotic sciatic nerve derived Schwann cells (SNSCs) in both settings as demonstrated using immunofluorescence (IF) and flow cytometry. EPO treatment significantly attenuated pro-inflammatory genes (IL1β, iNOS, and CD68) and augmented anti-inflammatory genes (IL10 and CD163) and the cell-surface marker CD206. EPO also increased anti-apoptotic (Annexin V/7AAD) effects after lipopolysaccharide (LPS) induction in macrophages. Our data demonstrate EPO promotes the M2 phenotype macrophages to ameliorate apoptosis and efferocytosis of dying SCs and myelin debris and improves SN functional recovery following SNCI.Subject terms: Neurodegeneration, Somatic system  相似文献   
948.
So far, oil‐rewarding flowers are known to be pollinated only by oil‐collecting bees, which gather and use lipids for larval feed and nest building. As honeybees do not have oil‐collecting appendages on their legs, they have not been associated with pollination of such flowers. In a predominantly Apis pollinated and food deceptive clade of wild Cymbidiums, we investigated the reproductive strategy of Cymbidium aloifolium, hitherto unknown for its floral oil reward. Our study demonstrates the requisites for establishment of mutualistic interaction between the oil flower and Apis cerana indica, a corbiculate bee. Success in pollination requires learning by honeybees to access the food reward, thereby displaying cognitive ability of the pollinator to access the customized reward. Morphometric matching between orchid flowers and the pollinator, and that between pollinia and stigmatic cavity also appear to be essential in the pollination success. Absence of pollinator competition and prolonged flower‐handling time are suggested to promote floral constancy. The present study highlights the need to explore the spectrum of pollination rewards pursued by honeybees, which may include unconventional composition of floral resources.  相似文献   
949.
950.
In agro-ecosystem, plant pathogens hamper food quality, crop yield, and global food security. Manipulation of naturally occurring defense mechanisms in host plants is an effective and sustainable approach for plant disease management. Various natural compounds, ranging from cell wall components to metabolic enzymes have been reported to protect plants from infection by pathogens and hence provide specific resistance to hosts against pathogens, termed as induced resistance. It involves various biochemical components, that play an important role in molecular and cellular signaling events occurring either before (elicitation) or after pathogen infection. The induction of reactive oxygen species, activation of defensive machinery of plants comprising of enzymatic and non-enzymatic antioxidative components, secondary metabolites, pathogenesis-related protein expression (e.g. chitinases and glucanases), phytoalexin production, modification in cell wall composition, melatonin production, carotenoids accumulation, and altered activity of polyamines are major induced changes in host plants during pathogen infection. Hence, the altered concentration of biochemical components in host plants restricts disease development. Such biochemical or metabolic markers can be harnessed for the development of “pathogen-proof” plants. Effective utilization of the key metabolites-based metabolic markers can pave the path for candidate gene identification. This present review discusses the valuable information for understanding the biochemical response mechanism of plants to cope with pathogens and genomics-metabolomics-based sustainable development of pathogen proof cultivars along with knowledge gaps and future perspectives to enhance sustainable agricultural production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号