首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   21篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   17篇
  2020年   7篇
  2019年   5篇
  2018年   13篇
  2017年   12篇
  2016年   12篇
  2015年   15篇
  2014年   7篇
  2013年   13篇
  2012年   14篇
  2011年   16篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   13篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1996年   2篇
  1995年   2篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
81.
Exposure to Lead -causes testicular dysfunction through oxidative stress, inflammation, and apoptosis; however, naringenin (NGN) therapeutic impact against lead-evoked testicular dysfunction remains elusive. Herein, the point of the study was to examine the defensive impact of NGN on testicular dysfunction initiated by lead. Seventy-Two male Wistar rats were allotted into nine groups; control group, drug control groups, lead acetate group, as well as NGN treated groups (10, 25, and 50 mg/kg) respectively, given 5 days before lead acetate treatment. The result showed clearly the impact of lead on reduced sperm count, sperm motility as well as serum testosterone and LH levels. Additionally, it caused a significant rise in testicular inflammatory markers TNF-α, IL-1β, and TGFβ, effects that were accompanied by a reduction of AKT and mTOR levels. Lead acetate also caused degenerative changes in the testis, atrophy, and loss of spermatogenic series. Our findings revealed that NGN in a dose-dependent manner improved spermiotoxicity induced by lead acetate via restoration of the testicular function, preservation of spermatogenesis, halting inflammatory cytokines along with the enhancement of germ cell survival using upregulation of AKT/mTOR expressions. The present study discloses that NGN suppresses lead acetate toxicity that is involved in the antioxidant effect in a dose-dependent manner, besides its anti-inflammatory property.  相似文献   
82.
Vitamin A and its naturally occurring derivatives 9-cis retinoic acid (9-cis RA) and all-trans retinoic acid (ATRA) exert a variety of biological effects including immunomodulation, growth, differentiation, and apoptosis of normal and neoblastic cells. In order to directly study the effects of these retinoids on macrophage gene expression and lipid metabolism, primary human monocytes and in vitro differentiated macrophages were stimulated with beta-carotene, 9-cis RA, and ATRA and global gene expression profiles were analyzed by Affymetrix DNA-microarrays and differentially regulated genes were verified by quantitative TaqMan RT-PCR. Among others, we have identified a strong up-regulation of a cluster of genes involved in cholesterol metabolism including apolipoproteins (apoC-I, apoC-II, apoC-IV, apoE), the scavenger receptor CD36, steroid-27-hydroxylase (CYP27A1), liver X receptor alpha (LXRalpha), and ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Since the CYP27A1 gene displayed the strongest up-regulation on the mRNA level, we cloned various deletion constructs of the promoter region and analyzed the response to retinoids in macrophages. Thereby, a novel retinoic acid-responsive element could be located within 191 bp of the proximal CYP27A1 promoter. To further assess the functional consequences of retinoid receptor action, we carried out phospholipid and cholesterol efflux assays. We observed a strong induction of apoA-I-dependent lipid efflux in stimulated macrophages, implicating an important role for retinoids in cellular functions of macrophages.  相似文献   
83.
Three tetraploid somatic hybrid lines produced by protoplast fusion between a dihaploid potato, Solanum tuberosum, cultivar BF15 and the wild potato species Solanum berthaultii were evaluated here for their response to different soil‐borne pathogens, that is Fusarium solani, Pythium aphanidermatum and Rhizoctonia solani as well as to infection by potato virus Y (PVY). Both hybrid and BF15 plants grown in vitro were inoculated with the tested pathogen strains, that is R. solani, P. aphanidermatum, or F. solani. The growth level and disease severity index of these plants were compared to the susceptible commercial cultivar Spunta. A better growth of inoculated hybrid plants and restricted disease symptoms were observed in comparison with the commercial plants. Under glasshouse conditions and after inoculation with R. solani and P. aphanidermatum, improved resistance of the hybrid plants to these pathogens was confirmed. Indeed, these plants showed no significant damage following inoculation and a better development in R. solani‐infected plants. The susceptibility of the hybrid tubers to R. solani, P. aphanidermatum, and to F. solani infection was also determined. A significant reduction of tissue colonisation was observed in all the hybrid lines compared to the cultivated cultivars. The STBc and STBd hybrids also showed improved resistance to the PVY ordinary strain (PVYo) under glasshouse conditions.  相似文献   
84.
Nine non-pathogenic bacterial isolates, recovered from Datura metel organs and able to colonise the internal stem tissues of tomato cultivar Rio Grande, were screened for their ability to suppress tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici (FOL), and to enhance plant growth. S33 and S85 isolates tested were found to be the most effective in decreasing Fusarium wilt severity by 94–95% compared to FOL-inoculated and untreated control. A significant enhancement of growth parameters was recorded on tomato plants inoculated or not with FOL. Both isolates were characterised and identified using 16S rDNA sequencing genes as Stenotrophomonas sp. str. S33 (KR818084) and Pseudomonas sp. str. S85 (KR818087). Screened in vitro for their antifungal activity towards FOL, these isolates led to 38.7% and 22.5% decrease in pathogen radial growth and to the formation of an inhibition zone of 12.75 and 8.37?mm respectively. Stenotrophomonas sp. str. S33 and Pseudomonas sp. str. S85 were found to be chitinase-, protease- and pectinase-producing strains but unable to produce hydrogen cyanide. Production of indole-3-acetic acid-like compounds, phosphate solubilising ability and pectinase activity were investigated for elucidating their plant growth-promoting traits and their endophytic colonisation ability.  相似文献   
85.
The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1–2591.4 μg/mL within the pH range 1.2–5.0) and low solubility at high pH (5.8–51.9 μg/mL within the pH range 6.5–7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8–98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2–5.0) and relatively low (15.9–86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5–7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.  相似文献   
86.
A unique combination of physicochemical conditions prevails in the lower convective layer (LCL) of the brine pool at Atlantis II (ATII) Deep in the Red Sea. With a maximum depth of over 2000 m, the pool is characterized by acidic pH (5.3), high temperature (68 °C), salinity (26%), low light levels, anoxia, and high concentrations of heavy metals. We have established a metagenomic dataset derived from the microbial community in the LCL, and here we describe a gene for a novel mercuric reductase, a key component of the bacterial detoxification system for mercuric and organomercurial species. The metagenome-derived gene and an ortholog from an uncultured soil bacterium were synthesized and expressed in Escherichia coli. The properties of their products show that, in contrast to the soil enzyme, the ATII-LCL mercuric reductase is functional in high salt, stable at high temperatures, resistant to high concentrations of Hg2+, and efficiently detoxifies Hg2+ in vivo. Interestingly, despite the marked functional differences between the orthologs, their amino acid sequences differ by less than 10%. Site-directed mutagenesis and kinetic analysis of the mutant enzymes, in conjunction with three-dimensional modeling, have identified distinct structural features that contribute to extreme halophilicity, thermostability, and high detoxification capacity, suggesting that these were acquired independently during the evolution of this enzyme. Thus, our work provides fundamental structural insights into a novel protein that has undergone multiple biochemical and biophysical adaptations to promote the survival of microorganisms that reside in the extremely demanding environment of the ATII-LCL.  相似文献   
87.
88.
89.
90.
Different stages of liver regeneration are regulated by a variety of factors such as the liver growth associated protein ALR, augmenter of liver regeneration. Furthermore, small molecules like polyamines were proven to be essential for hepatic growth and regeneration. Therefore, using primary human hepatocytes in vitro we investigated the effect of ALR on the biosynthesis of polyamines. We demonstrated by HPLC analysis that recombinant ALR enhanced intracellular hepatic putrescine, spermidine, and spermine levels within 9-12h. The activation of polyamine biosynthesis was dose dependent with putrescine showing the strongest increase. Additionally, ALR treatment induced mRNA expression of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, both key enzymes of polyamine biosynthesis. Further, ALR induced c-myc mRNA expression, a regulator of ODC expression, and therefore we assume that ALR exerts its liver regeneration augmenting effects through stimulation of its signalling pathway leading in part to enhanced polyamine synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号