首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   155篇
  国内免费   1篇
  2023年   6篇
  2022年   13篇
  2021年   36篇
  2020年   14篇
  2019年   26篇
  2018年   31篇
  2017年   23篇
  2016年   53篇
  2015年   54篇
  2014年   89篇
  2013年   110篇
  2012年   161篇
  2011年   134篇
  2010年   96篇
  2009年   91篇
  2008年   124篇
  2007年   118篇
  2006年   116篇
  2005年   109篇
  2004年   116篇
  2003年   100篇
  2002年   119篇
  2001年   37篇
  2000年   27篇
  1999年   27篇
  1998年   26篇
  1997年   26篇
  1996年   16篇
  1995年   13篇
  1994年   21篇
  1993年   16篇
  1992年   26篇
  1991年   24篇
  1990年   20篇
  1989年   17篇
  1988年   11篇
  1987年   12篇
  1986年   15篇
  1985年   15篇
  1984年   17篇
  1982年   8篇
  1981年   7篇
  1980年   11篇
  1978年   8篇
  1976年   7篇
  1974年   8篇
  1973年   7篇
  1970年   5篇
  1967年   5篇
  1966年   5篇
排序方式: 共有2205条查询结果,搜索用时 171 毫秒
141.
Efforts in experimental therapeutics of atherosclerosis are mostly focused on identifying candidate targets that can be exploited in developing new strategies to reduce plaque progression, induce its regression and/or improve stability of advanced lesions. Plaque macrophages are central players in all these processes, and consequently a significant amount of research is devoted to understanding mechanisms that regulate, for instance, macrophage apoptosis, necrosis or migration. Macrophage diversity is a key feature of the macrophage population in the plaque and can impact many aspects of lesion development. Thus, searching for molecular entities that contribute to atherorelevant functions of a specific macrophage type but not others may lead to identification of targets that can be exploited in phenotype selective modulation of the lesional macrophage. This however, remains an unmet goal. In recent years several studies have revealed critical functions of micro-RNAs (miRs) in mechanisms of macrophage polarization, and a number of miRs have emerged as being specific of distinctive macrophage subsets. Not only can these miRs represent the first step towards recognition of phenotype specific targets, but they may also pave the way to reveal novel atherorelevant pathways within macrophage subsets. This article discusses some of these recent findings, speculates on their potential relevance to atherosclerosis and elaborates on the prospective use of miRs to affect the function of plaque macrophages in a phenotype selective manner.  相似文献   
142.
George Palade, a founding father of cell biology and of the American Society for Cell Biology (ASCB), established the ultrastructural framework for an analysis of how proteins are secreted and membranes are assembled in eukaryotic cells. His vision inspired a generation of investigators to probe the molecular mechanisms of protein transport. My laboratory has dissected these pathways with complementary genetic and biochemical approaches. Peter Novick, one of my first graduate students, isolated secretion mutants of Saccharomyces cerevisiae, and through cytological analysis of single and double mutants and molecular cloning of the corresponding SEC genes, we established that yeast cells use a secretory pathway fundamentally conserved in all eukaryotes. A biochemical reaction that recapitulates the first half of the secretory pathway was used to characterize Sec proteins that comprise the polypeptide translocation channel in the endoplasmic reticulum (ER) membrane (Sec61) and the cytoplasmic coat protein complex (COPII) that captures cargo proteins into transport vesicles that bud from the ER.  相似文献   
143.
Research over the past decade has documented clear, robust changes in women's sexual preferences and interests across the ovarian cycle. When fertile, women are particularly attracted to a number of masculine male features (e.g., masculine faces, voices, scents and bodies) and other traits, and especially when they evaluate men's “sexiness” rather than their attractiveness as long-term partners. The current research extended this line of research by examining changes in women's self-reported sexual interests across the cycle. We asked 68 normally ovulating women in committed romantic relationships to fill out questionnaires about their sexual preferences and interests (at that time, not in general) twice across their cycles: once when fertile and once during the luteal phase. Relative to during the luteal phase, fertile women expressed (a) greater emphasis on the physical attractiveness of a partner; (b) greater arousal at the sight or thought of attractive male bodily features; (c) greater willingness to engage in and interest in sex with attractive men, even ones who they do not know well (interest in sexual opportunism). These findings importantly extend our understanding of women's fertile-phase sexuality.  相似文献   
144.
145.
Understanding the role of humans in the dispersal of predominantly animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV) in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geopolitical boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens.  相似文献   
146.
Microfabrication has become widely utilized to generate controlled microenvironments that establish chemical concentration gradients for a variety of engineering and life science applications. To establish microfluidic flow, the majority of existing devices rely upon additional facilities, equipment, and excessive reagent supplies, which together limit device portability as well as constrain device usage to individuals trained in technological disciplines. The current work presents our laboratory-developed bridged μLane system, which is a stand-alone device that runs via conventional pipette loading and can operate for several days without need of external machinery or additional reagent volumes. The bridged μLane is a two-layer polydimethylsiloxane microfluidic device that is able to establish controlled chemical concentration gradients over time by relying solely upon differences in reagent densities. Fluorescently labeled Dextran was used to validate the design and operation of the bridged μLane by evaluating experimentally measured transport properties within the microsystem in conjunction with numerical simulations and established mathematical transport models. Results demonstrate how the bridged μLane system was used to generate spatial concentration gradients that resulted in an experimentally measured Dextran diffusivity of (0.82 ± 0.01) × 10(-6) cm(2)/s.  相似文献   
147.
Microarray technology is a powerful tool for animal functional genomics studies, with applications spanning from gene identification and mapping, to function and control of gene expression. Microarray assays, however, are complex and costly, and hence generally performed with relatively small number of animals. Nevertheless, they generate data sets of unprecedented complexity and dimensionality. Therefore, such trials require careful planning and experimental design, in addition to tailored statistical and computational tools for their appropriate data mining. In this review, we discuss experimental design and data analysis strategies, which incorporate prior genomic and biological knowledge, such as genotypes and gene function and pathway membership. We focus the discussion on the design of genetical genomics studies, and on significance testing for detection of differential expression. It is shown that the use of prior biological information can improve the efficiency of microarray experiments.  相似文献   
148.
Habitat degradation and fragmentation are expected to reduce seed dispersal rates by reducing fruit availability as well as the movement and abundance of frugivores. These deleterious impacts may also interact with each other at different spatial scales, leading to nonlinear effects of fruit abundance on seed dispersal. In this study we assessed whether the degradation and fragmentation of southern Chilean forests had the potential to restrict seed dispersal the lingue (Persea lingue) tree, a fleshy-fruited tree species. Of five frugivore bird species, the austral thrush (Turdus falcklandii) and the fire-eyed diucon (Xolmis pyrope) were the only legitimate seed dispersers as well as being the most abundant species visiting lingue trees. The results showed little or no direct effect of habitat fragmentation on seed dispersal estimates, possibly because the assemblage of frugivore birds was comprised habitat-generalist species. Instead, the number of fruits removed per focal tree exhibited an enhanced response to crop size, but only in the more connected fragments. In the fruit-richer fragment networks, there was an increased fragment-size effect on the proportion of fruits removed in comparison to fruit-poor networks in which the fragment size effect was spurious. We suggest that such nonlinear effects are widespread in fragmented forest regions, resulting from the link between the spatial scales over which frugivores sample resources and the spatial heterogeneity in fruiting resources caused by habitat fragmentation and degradation.  相似文献   
149.
The genetic and physiological mechanisms of aluminum (Al) tolerance have been well studied in certain cereal crops, and Al tolerance genes have been identified in sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Rice (Oryza sativa) has been reported to be highly Al tolerant; however, a direct comparison of rice and other cereals has not been reported, and the mechanisms of rice Al tolerance are poorly understood. To facilitate Al tolerance phenotyping in rice, a high-throughput imaging system and root quantification computer program was developed, permitting quantification of the entire root system, rather than just the longest root. Additionally, a novel hydroponic solution was developed and optimized for Al tolerance screening in rice and compared with the Yoshida''s rice solution commonly used for rice Al tolerance studies. To gain a better understanding of Al tolerance in cereals, comparisons of Al tolerance across cereal species were conducted at four Al concentrations using seven to nine genetically diverse genotypes of wheat, maize (Zea mays), sorghum, and rice. Rice was significantly more tolerant than maize, wheat, and sorghum at all Al concentrations, with the mean Al tolerance level for rice found to be 2- to 6-fold greater than that in maize, wheat, and sorghum. Physiological experiments were conducted on a genetically diverse panel of more than 20 rice genotypes spanning the range of rice Al tolerance and compared with two maize genotypes to determine if rice utilizes the well-described Al tolerance mechanism of root tip Al exclusion mediated by organic acid exudation. These results clearly demonstrate that the extremely high levels of rice Al tolerance are mediated by a novel mechanism, which is independent of root tip Al exclusion.Aluminum (Al) is the most abundant metal in the earth''s crust, constituting approximately 7% of the soil (Wolt, 1994). Al is predominately found as a key component of soil clays; however, under highly acidic soil conditions (pH < 5.0), Al3+ is solubilized into the soil solution and is highly phytotoxic. Al3+ causes a rapid inhibition of root growth that leads to a reduced and stunted root system, thus having a direct effect on the ability of a plant to acquire both water and nutrients. Approximately 30% of the world''s total land area and over 50% of potentially arable lands are acidic, with the majority (60%) found in the tropics and subtropics (von Uexkull and Mutert, 1995). Thus, acidic soils are a major limitation to crop production, particularly in the developing world.As a whole, cereal crops (Poaceae) provide an excellent model for studying Al tolerance because of their abundant genetic resources, large, active research communities, and importance to agriculture. In addition, work in one cereal species can rapidly translate into impact throughout the family. Previous research has focused on understanding the genetic and physiological mechanisms of Al tolerance in maize (Zea mays), sorghum (Sorghum bicolor), and wheat (Triticum aestivum). The most recognized physiological mechanism conferring Al tolerance in plants involves exclusion of Al from the root tip (Miyasaka et al., 1991; Delhaize and Ryan, 1995; Kochian, 1995; Kochian et al., 2004a, 2004b). The exclusion mechanism is primarily mediated by Al-activated exudation of organic acids such as malate, citrate, or oxalate from the root apex, the site of Al toxicity (Ryan et al., 1993, 2001; Ma et al., 2001). These organic acids chelate Al in the rhizosphere, reducing the concentration and toxicity of Al at the growing root tip (Ma et al., 2001). Phosphate has also been identified as a class of root exudates involved in cation chelation and therefore can be considered a potential exudate involved in Al exclusion from the root tip (Pellet et al., 1996).Al-activated malate and citrate anion efflux transporters have been cloned from wheat (ALMT1; Sasaki et al., 2004) and sorghum (SbMATE; Magalhaes et al., 2007), and root citrate efflux transporters have been implicated in Al tolerance in maize (Piñeros and Kochian, 2001; Zhang et al., 2001). Recently, a maize homolog of sorghum SbMATE was shown to be the root citrate efflux transporter that plays a role in maize Al tolerance (Maron et al., 2010). Although organic acids have been shown to play a major role in Al tolerance in these species, another exclusion mechanism has been identified in an Arabidopsis (Arabidopsis thaliana) mutant, where a root-mediated increase in rhizosphere pH lowers the Al3+ activity and thus participates in Al exclusion from the root apex (Degenhardt et al., 1998). Furthermore, there is clear evidence that tolerance in maize cannot be fully explained by organic acid release (Piñeros et al., 2005). These types of findings strongly suggest that multiple Al tolerance mechanisms exist in plants.Rice (Oryza sativa) has been reported to be the most Al-tolerant cereal crop under field conditions, capable of withstanding significantly higher concentrations of Al than other major cereals (Foy, 1988). Despite this fact, very little is known about the physiological mechanisms of Al tolerance in rice. Two independent studies have identified increased Al accumulation in the root apex in susceptible compared with Al-tolerant rice varieties, but no differences were observed in organic acid exudation or rhizosphere pH (Ma et al., 2002; Yang et al., 2008). These studies suggest that rice may contain novel physiological and/or genetic mechanisms that confer significantly higher levels of Al tolerance than those found in other cereals. A more thorough analysis is required to clarify the mechanism of Al tolerance in rice.Cultivated rice is characterized by deep genetic divergence between the two major varietal groups: Indica and Japonica (Dally and Second, 1990; Garris et al., 2005; Hu et al., 2006; Londo et al., 2006). Extensive selection pressure over the last 10,000 years has resulted in the formation of five genetically distinct subpopulations: indica and aus within the Indica varietal group, and temperate japonica, tropical japonica, and aromatic/groupV within the Japonica varietal group (Garris et al., 2005; Caicedo et al., 2007; K. Zhao and S. McCouch, personal communication). (Note: When referring to varietal groups, the first letter will be capitalized, while lowercase letters will be used to refer to the subpopulation groups.) Subpopulation differences in trait performance are often significant, particularly with respect to biotic and abiotic stress (Champoux et al., 1995; Lilley et al., 1996; Garris et al. 2003; Xu et al., 2009). This can lead to confusion because trait or performance differences may be confounded with subpopulation structure, leading to false positives (type 1 error; Devlin and Roeder, 1999; Pritchard and Donnelly, 2001; Yu et al., 2006; Zhao et al., 2007). Therefore, it is important to consider the subpopulation origin of genotypes being compared when studying the genetics and physiology of Al tolerance in rice.Al tolerance screening is typically conducted by comparing root growth of seedlings grown in hydroponic solutions, with and without Al (Piñeros and Kochian, 2001; Magalhaes et al., 2004; Sasaki et al., 2004). Sorghum and maize are often screened for Al tolerance in Magnavaca''s nutrient solution (Piñeros and Kochian, 2001; Magalhaes et al., 2004; Piñeros et al., 2005), while rice seedlings are typically grown in Yoshida''s solution (Yoshida et al., 1976). Furthermore, Al concentrations used to screen for Al tolerance in maize (222 μm), sorghum (148 μm), and wheat (100 μm) are significantly lower than those used for screening Al tolerance in rice (1,112–1,482 μm; Wu et al., 2000; Nguyen et al., 2001, 2002, 2003). These differences in chemical composition of the nutrient solutions make it difficult to directly compare plant response to Al across these cereals. In rice, the high Al concentrations required to observe significant differences in root growth between susceptible and resistant varieties also complicate Al tolerance screening due to the precipitation of Al along with other elements. The result is that control (−Al) and treatment (+Al) solutions may differ with regard to essential mineral nutrients that react with Al, leading to differences in growth not directly attributable to Al. Additionally, because the active form of Al that is toxic to root growth is Al3+, any Al that precipitates out of solution has no effect on root growth (Kochian et al., 2004a). In a hydroponic solution, Al may be found in one of four forms: (1) as free Al3+, where it actively inhibits root growth; (2) precipitated with other elements and essentially unavailable to inhibit plant growth; (3) different hydroxyl monomers of Al, which are not believed to be toxic to roots (Parker et al., 1988); or (4) complexed with other elements in an equilibrium between its active and inactive states. The degree to which Al inhibits root growth is primarily dependent upon the activity of free Al3+ in solution (Kochian et al., 2004a).The objectives of this study were to (1) develop and optimize a suitable nutrient solution and high-throughput Al tolerance screening method for rice; (2) quantify and compare differences in Al tolerance between maize, sorghum, wheat, and rice; and (3) use the developed screening methods to determine if rice utilizes the organic acid-mediated Al exclusion mechanism that is observed in maize, sorghum, and wheat.  相似文献   
150.
GEOCHEM-EZ is a multi-functional chemical speciation program, designed to replace GEOCHEM-PC, which can only be used on DOS consoles. Chemical speciation programs, such as GEOCHEM and GEOCHEM-PC, have been excellent tools for scientists designing appropriate solutions for their experiments. GEOCHEM-PC is widely used in plant nutrition and soil and environmental chemistry research to perform equilibrium speciation computations, allowing the user to estimate solution ion activities and to consider simple complexes and solid phases. As helpful as GEOCHEM-PC has been to scientists, the consensus was that the program was not very user friendly, was difficult to learn and to troubleshoot, and suffered from several functional weaknesses. To enhance the usability and to address the problems found in GEOCHEM-PC, we upgraded the program with a Java graphical interface, added Help files, and improved its power and function, allowing it to run on any computer that supports Windows XP, Vista or Windows 7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号