首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1591篇
  免费   137篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   21篇
  2020年   13篇
  2019年   21篇
  2018年   20篇
  2017年   14篇
  2016年   41篇
  2015年   43篇
  2014年   68篇
  2013年   82篇
  2012年   117篇
  2011年   95篇
  2010年   69篇
  2009年   83篇
  2008年   101篇
  2007年   105篇
  2006年   106篇
  2005年   93篇
  2004年   96篇
  2003年   86篇
  2002年   106篇
  2001年   18篇
  2000年   12篇
  1999年   22篇
  1998年   23篇
  1997年   26篇
  1996年   15篇
  1995年   9篇
  1994年   18篇
  1993年   16篇
  1992年   11篇
  1991年   18篇
  1990年   18篇
  1989年   17篇
  1988年   7篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   17篇
  1983年   11篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   4篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有1729条查询结果,搜索用时 15 毫秒
81.
82.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   
83.
Previous in vitro research from our laboratory has demonstrated the existence of a protein purified from the chicken bursa of Fabricius, with potent antisteroidogenic and antiproliferative action on granulose cells and lymphocytes, respectively called Bursal anti-steroidogenic peptide (BASP). This protein is heat-labile, basic, and amino- and carboxy-terminus blocked. In highly purified form, the protein presents as a doublet on SDS-PAGE electrophoresis with an apparent MW of approximately 29 and approximately 32 kDa. Recently, Nanoflow Q-TOF Mass Spectrometry amino acid sequencing allowed determination of a convincing partial amino acid sequence, strongly suggesting a probable relationship of BASP with histone H1. Bursal cDNA expression library screening, using an antibody produced against BASP, also identified a clone with a sequence matching histone H1. Presently, we have demonstrated that SDS-PAGE electrophoresis of highly purified and bioactive BASP, and commercially-available calf thymus derived histone H1, produced similar doublets at approximately the same apparent MW, and that the electrophoretic profile of these 2 preparations were strikingly similar following 2 dimensional gel electrophoresis. The BASP doublet produced on SDS-PAGE was recognized by a commercially available monoclonal antibody recognizing a highly conserved region of histone H1. Furthermore, calf thymus histone H1 was found to suppress mitogen-stimulated chicken B-cell proliferation in a concentration-related manner, similar to the action of BASP. These data indicate that BASP shares substantial structural homology with, and may be identical to, histone H1.  相似文献   
84.
Graham MA  Marek LF  Shoemaker RC 《Genetics》2002,162(4):1961-1977
PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.  相似文献   
85.
The CDKN2A tumour suppressor locus encodes two distinct proteins, p16(INK4a) and p14(ARF), both of which have been implicated in replicative senescence, the state of permanent growth arrest provoked in somatic cells by aberrant proliferative signals or by cumulative population doublings in culture. Here we describe primary fibroblasts from a member of a melanoma-prone family who is homozygous for an intragenic deletion in CDKN2A. Analyses of the resultant gene products imply that the cells are p16(INK4a) deficient but express physiologically relevant levels of a frameshift protein that retains the known functions of p14(ARF). Although they have a finite lifespan, the cells are resistant to arrest by oncogenic RAS. Indeed, ectopic expression of RAS and telomerase (hTERT) results in outgrowth of anchorage-independent colonies that have essentially diploid karyotypes and functional p53. We find that in human fibroblasts, ARF is not induced demonstrably by RAS, pointing to significant differences between the proliferative barriers implemented by the CDKN2A locus in different cell types or species.  相似文献   
86.
The hydrothermal reaction of NiCl2·6H2O, MoO3, 3,4′-bipyridine (3,4′-bpy) and H2O in the mole ratio 1.0:1.0:2.1:1500 yields [Ni(3,4′-bpy)2MoO4]·3H2O (1·3H2O) in 80% yield. The structure of 1·3H2O consists of a three-dimensional coordination polymer {Ni(3,4′-bpy)2}n2n+ with entrained {MoO4}2− tetrahedra and with water molecules of crystallization occupying channels within the bimetallic oxide-ligand framework. Crystal data: C20H16N4O4NiMo·3H2O (1·3H2O), tetragonal P41212, a=13.1866(5) Å, c=29.458(2) Å, V=5122.3(4) Å3, Z=8, Dcalc=1.532 g cm−3.  相似文献   
87.
Human Toll-like receptor (TLR) 4 and TLR2 receptors recognize LPS or lipoteichoic acid (LTA), respectively. Prolonged exposure of human macrophages/monocytes to bacterial LPS induces a state of adaptation/tolerance to subsequent LPS challenge. Inflammatory gene expressions such as IL-1beta and TNF-alpha are selectively repressed, while certain anti-inflammatory genes such as secretory IL-1R antagonist are still induced in LPS-adapted/tolerant cells. In this report, we demonstrate that LPS-tolerized human promonocytic THP-1 cells develop cross-tolerance and no longer respond to LTA-induced IL-1beta/TNF-alpha production, indicating that disruption of common intracellular signaling is responsible for the decreased IL-1beta/TNF-alpha production. We observe that down-regulation of IL-1R-associated kinase (IRAK) protein level and kinase activity closely correlates with the development of cross-tolerance. IRAK protein levels and kinase activities in LPS-tolerized cells remain low and hyporesponsive to subsequent LPS or LTA challenges. We also demonstrate that THP-1 cells with prolonged LTA treatment develop LTA tolerance and do not express IL-1beta/TNF-alpha upon further LTA challenge. Strikingly, cells tolerized with LTA are only refractory to subsequent LTA challenge and can still respond to LPS stimulation. Correspondingly, stimulation of TLR2 by LTA, although activating IRAK, does not cause IRAK degradation. IRAK from LTA-tolerized cells can be subsequently activated and degraded by further LPS challenge, but not LTA treatment. Our studies reveal that LTA-induced tolerance is distinct compared with that of LPS tolerance, and is likely due to disruption of unique TLR2 signaling components upstream of MyD88/IRAK.  相似文献   
88.
It is well-known that micromolar to millimolar concentrations of cardiac glycosides inhibit Na/K pump activity, however, some early reports suggested nanomolar concentrations of these glycosides stimulate activity. These early reports were based on indirect measurements in multicellular preparations, hence, there was some uncertainty whether ion accumulation/depletion rather than pump stimulation caused the observations. Here, we utilize the whole-cell patch-clamp technique on isolated cardiac myocytes to directly measure Na/K pump current (I(P)) in conditions that minimize the possibility of ion accumulation/depletion causing the observed effects. In guinea pig ventricular myocytes, nanomolar concentrations of dihydro-ouabain (DHO) caused an outward current that appeared to be due to stimulation of I(P) because of the following: (1) it was absent in 0 mM [K(+)](o), as was I(P); (2) it was absent in 0 mM [Na(+)](i), as was I(P); (3) at reduced [Na(+)](i), the outward current was reduced in proportion to the reduction in I(P); (4) it was eliminated by intracellular vanadate, as was I(P). Our previous work suggested guinea pig ventricular myocytes coexpress the alpha(1)- and alpha(2)-isoforms of the Na/K pumps. The stimulation of I(P) appears to be through stimulation of the high glycoside affinity alpha(2)-isoform and not the alpha(1)-isoform because of the following: (1) regulatory signals that specifically increased activity of the alpha(2)-isoform increased the amplitude of the stimulation; (2) regulatory signals that specifically altered the activity of the alpha(1)-isoform did not affect the stimulation; (3) changes in [K(+)](o) that affected activity of the alpha(1)-isoform, but not the alpha(2)-isoform, did not affect the stimulation; (4) myocytes from one group of guinea pigs expressed the alpha(1)-isoform but not the alpha(2)-isoform, and these myocytes did not show the stimulation. At 10 nM DHO, total I(P) increased by 35 +/- 10% (mean +/- SD, n = 18). If one accepts the hypothesis that this increase is due to stimulation of just the alpha(2)-isoform, then activity of the alpha(2)-isoform increased by 107 +/- 30%. In the guinea pig myocytes, nanomolar ouabain as well as DHO stimulated the alpha(2)-isoform, but both the stimulatory and inhibitory concentrations of ouabain were approximately 10-fold lower than those for DHO. Stimulation of I(P) by nanomolar DHO was observed in canine atrial and ventricular myocytes, which express the alpha(1)- and alpha(3)-isoforms of the Na/K pumps, suggesting the other high glycoside affinity isoform (the alpha(3)-isoform) also was stimulated by nanomolar concentrations of DHO. Human atrial and ventricular myocytes express all three isoforms, but isoform affinity for glycosides is too similar to separate their activity. Nevertheless, nanomolar DHO caused a stimulation of I(P) that was very similar to that seen in other species. Thus, in all species studied, nanomolar DHO caused stimulation of I(P), and where the contributions of the high glycoside affinity alpha(2)- and alpha(3)-isoforms could be separated from that of the alpha(1)-isoform, it was only the high glycoside affinity isoform that was stimulated. These observations support early reports that nanomolar concentrations of glycosides stimulate Na/K pump activity, and suggest a novel mechanism of isoform-specific regulation of I(P) in heart by nanomolar concentrations of endogenous ouabain-like molecules.  相似文献   
89.
Interaction between metabotropic glutamate receptor 7 and alpha tubulin   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) mediate a variety of responses to glutamate in the central nervous system. A primary role for group-III mGluRs is to inhibit neurotransmitter release from presynaptic terminals, but the molecular mechanisms that regulate presynaptic trafficking and activity of group-III mGluRs are not well understood. Here, we describe the interaction of mGluR7, a group-III mGluR and presynaptic autoreceptor, with the cytoskeletal protein, alpha tubulin. The mGluR7 carboxy terminal (CT) region was expressed as a GST fusion protein and incubated with rat brain extract to purify potential mGluR7-interacting proteins. These studies yielded a single prominent mGluR7 CT-associated protein of 55 kDa, which subsequent microsequencing analysis revealed to be alpha tubulin. Coimmunoprecipitation assays confirmed that full-length mGluR7 and alpha tubulin interact in rat brain as well as in BHK cells stably expressing mGluR7a, a splice variant of mGluR7. In addition, protein overlay experiments showed that the CT domain of mGluR7a binds specifically to purified tubulin and calmodulin, but not to bovine serum albumin. Further pull-down studies revealed that another splice variant mGluR7b also interacts with alpha tubulin, indicating that the binding region is not localized to the splice-variant regions of either mGluR7a (900-915) or mGluR7b (900-923). Indeed, deletion mutagenesis experiments revealed that the alpha tubulin-binding site is located within amino acids 873-892 of the mGluR7 CT domain, a region known to be important for regulation of mGluR7 trafficking. Interestingly, activation of mGluR7a in cells results in an immediate and significant decrease in alpha tubulin binding. These data suggest that the mGluR7/alpha tubulin interaction may provide a mechanism to control access of the CT domain to regulatory molecules, or alternatively, that this interaction may lead to morphological changes in the presynaptic membrane in response to receptor activation.  相似文献   
90.
3'-Phosphoinositide-dependent protein kinase-1 (PDK-1) phosphorylates and activates members of the protein kinase AGC family and plays a key role in receptor tyrosine kinase signaling. Here we report the cloning and characterization of a splice variant of mouse PDK-1, mPDK-1 beta. The cDNA encoding mPDK-1 beta contains two alternative start codons and translation from these start codons generates proteins that are, respectively, 27 or 51 amino acid residues shorter at the amino-terminus than the previously identified PDK-1 isolated from mouse liver (now renamed mPDK-1 alpha) [J. Biol. Chem. 274 (1999) 8117]. Analysis of mouse tissues shows that mPDK-1 beta is highly expressed in the testis and various functional regions of the brain. Expression of this isoform is increased in the brain of aged mice. Both mPDK-1 alpha and mPDK-1 beta are autophosphorylated at both serine and threonine residues in vitro and showed similar levels of tyrosine phosphorylation when co-expressed with either constitutively active Src or Fyn tyrosine kinases in cells. However, the mPDK-1 isoforms showed significant differences in their response to pervanadate- or insulin plus vanadate-stimulated tyrosine phosphorylation. Taken together, our findings suggest that the two PDK-1 isoforms may be differentially regulated in cells. The specific expression of mPDK-1 beta in mouse testis and brains of aged mice also suggests potential involvement of this kinase in regulating animal spermatogenesis and aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号