首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   137篇
  国内免费   1篇
  2023年   5篇
  2022年   8篇
  2021年   21篇
  2020年   13篇
  2019年   21篇
  2018年   20篇
  2017年   14篇
  2016年   41篇
  2015年   43篇
  2014年   68篇
  2013年   82篇
  2012年   117篇
  2011年   95篇
  2010年   69篇
  2009年   83篇
  2008年   101篇
  2007年   105篇
  2006年   106篇
  2005年   93篇
  2004年   96篇
  2003年   86篇
  2002年   106篇
  2001年   18篇
  2000年   12篇
  1999年   22篇
  1998年   23篇
  1997年   26篇
  1996年   15篇
  1995年   9篇
  1994年   18篇
  1993年   16篇
  1992年   11篇
  1991年   18篇
  1990年   18篇
  1989年   17篇
  1988年   7篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   17篇
  1983年   11篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   4篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有1726条查询结果,搜索用时 15 毫秒
71.
Consistent differences in K+ currents in left and right atria of adult mouse hearts have been identified by the application of current- and voltage-clamp protocols to isolated single myocytes. Left atrial myocytes had a significantly (P < 0.05) larger peak outward K+ current density than myocytes from the right atrium. Detailed analysis revealed that this difference was due to the rapidly activating sustained K+ current, which is inhibited by 100 muM 4-aminopyridine (4-AP); this current was almost three times larger in the left atrium than in the right atrium. Accordingly, 100 muM 4-AP caused a significantly (P < 0.05) larger increase in action potential duration in left than in right atrial myocytes. Inward rectifier K+ current density was also significantly (P < 0.05) larger in left atrial myocytes. There was no difference in the voltage-dependent L-type Ca2+ current between left and right atria. As expected from this voltage-clamp data, the duration of action potentials recorded from single myocytes was significantly (P < 0.05) shorter in myocytes from left atria, and left atrial tissue was found to have a significantly (P < 0.05) shorter effective refractory period than right atrial tissue. These results reveal similarities between mice and other mammalian species where the left atrium repolarizes more quickly than the right, and provide new insight into cellular electrophysiological mechanisms responsible for this difference. These findings, and previous results, suggest that the atria of adult mice may be a suitable model for detailed studies of atrial electrophysiology and pharmacology under control conditions and in the context of induced atrial rhythm disturbances.  相似文献   
72.
Previously, it was reported that red blood cells (RBCs) are required to demonstrate participation of nitric oxide (NO) in the regulation of rabbit pulmonary vascular resistance (PVR). RBCs do not synthesize NO; hence, we postulated that ATP, present in millimolar amounts in RBCs, was the mediator, which evoked NO synthesis in the vascular endothelium. First, we found that deformation of RBCs, as occurs on passage across the pulmonary circulation with increasing flow rate, evoked increments in ATP release. Here, ATP (300 nM), administered to isolated, salt solution-perfused (PSS) rabbit lungs, decreased total and upstream (arterial) PVR, a response inhibited by NG-nitro-L-arginine methyl ester (L-NAME, 100 microM). In lungs perfused with PSS containing RBCs, L-NAME increased total and upstream PVR. In lungs perfused with PSS containing glibenclamide-treated RBCs, which inhibits ATP release, L-NAME was without effect. Apyrase grade VII (8 U/ml), which degrades ATP to AMP, was without effect on PVR in PSS-perfused lungs. These results are consistent with the hypothesis that ATP, released from RBCs as they traverse the pulmonary circulation, evokes endogenous NO synthesis.  相似文献   
73.
White-tailed deer (Odocoileus virginianus) were nearly extirpated from the southeastern USA during the late 19th and early 20th centuries. Recovery programmes, including protection of remnant native stocks and transplants from other parts of the species' range, were initiated in the early 1900's. The recovery programmes were highly successful and deer are presently numerous and continuously distributed throughout the southeastern USA. However, the impact of the recovery programmes on the present genetic structure of white-tailed deer remains to be thoroughly investigated. We used 17 microsatellite DNA loci to assess genetic differentiation and diversity for 543 white-tailed deer representing 16 populations in Mississippi and three extra-state reference populations. There was significant genetic differentiation among all populations and the majority of genetic variation (> or = 93%) was contained within populations. Patterns of genetic structure, genetic similarity and isolation by distance within Mississippi were not concordant with geographical proximity of populations or subspecies delineations. We detected evidence of past genetic bottlenecks in nine of the 19 populations examined. However, despite experiencing genetic bottlenecks or founder events, allelic diversity and heterozygosity were uniformly high in all populations. These exceeded reported values for other cervid species that experienced similar population declines within the past century. The recovery programme was successful in that deer were restored to their former range while maintaining high and uniform genetic variability. Our results seem to confirm the importance of rapid population expansion and habitat continuity in retaining genetic variation in restored populations. However, the use of diverse transplant stocks and the varied demographic histories of populations resulted in fine-scale genetic structuring.  相似文献   
74.
Reductions in total body fat decrease humoral immunity   总被引:6,自引:0,他引:6  
Mounting an immune response requires substantial energy, and it is well known that marked reductions in energy availability (e.g. starvation) can suppress immune function, thus increasing disease susceptibility and compromising survival. We tested the hypothesis that moderate reductions in energy availability impair humoral immunity. Specifically, we examined the effects of partial lipectomy (LIPx) on humoral immunity in two seasonally breeding rodent species, prairie voles (Microtus ochrogaster) and Siberian hamsters (Phodopus sungorus). Animals received bilateral surgical removal of epididymal white adipose tissue (EWATx), inguinal white adipose tissue (IWATx) or sham surgeries and were injected with the antigen keyhole limpet haemocyanin (KLH) either four or 12 weeks after surgery. In prairie voles, serum anti-KLH immunoglobulin G (IgG) did not differ significantly at four weeks. At 12 weeks, serum IgG was significantly reduced in IWATx, but not EWATx animals, compared with sham-operated animals. In Siberian hamsters, both IWATx and EWATx animals reduced serum IgG at four weeks. At 12 weeks, EWATx hamsters displayed a significant compensatory increase in IWAT pad mass compared with sham-operated hamsters, and serum IgG no longer differed from sham-operated animals. There was no significant increase in EWAT in IWATx hamsters compared with sham animals and IgG remained significantly reduced in IWATx hamsters. These results suggest that reductions in energy availability can impair humoral immunity.  相似文献   
75.
Inhibition of cyclin-dependent kinases (CDKs) by Thr14/Tyr15 phosphorylation is critical for normal cell cycle progression and is a converging event for several cell cycle checkpoints. In this study, we compared the relative contribution of inhibitory phosphorylation for cyclin A/B1-CDC2 and cyclin A/E-CDK2 complexes. We found that inhibitory phosphorylation plays a major role in the regulation of CDC2 but only a minor role for CDK2 during the unperturbed cell cycle of HeLa cells. The relative importance of inhibitory phosphorylation of CDC2 and CDK2 may reflect their distinct cellular functions. Despite this, expression of nonphosphorylation mutants of both CDC2 and CDK2 triggered unscheduled histone H3 phosphorylation early in the cell cycle and was cytotoxic. DNA damage by a radiomimetic drug or replication block by hydroxyurea stimulated a buildup of cyclin B1 but was accompanied by an increase of inhibitory phosphorylation of CDC2. After DNA damage and replication block, all cyclin-CDK pairs that control S phase and mitosis were to different degrees inhibited by phosphorylation. Ectopic expression of nonphosphorylated CDC2 stimulated DNA replication, histone H3 phosphorylation, and cell division even after DNA damage. Similarly, a nonphosphorylation mutant of CDK2, but not CDK4, disrupted the G2 DNA damage checkpoint. Finally, CDC25A, CDC25B, a dominant-negative CHK1, but not CDC25C or a dominant-negative WEE1, stimulated histone H3 phosphorylation after DNA damage. These data suggest differential contributions for the various regulators of Thr14/Tyr15 phosphorylation in normal cell cycle and during the DNA damage checkpoint.  相似文献   
76.
NuCOTN 33B, a Bt transgenic variety of upland cotton (Gossypium hirsutum L.) expressing the insecticidal protein Cry1Ac from Bacillus thuringiensis Berliner sp. kurstaki, was evaluated for resistance to Helicoverpa armigera (Hübner) during 1998-2000 in northern China. The results indicated that there was no significant difference in egg densities between NuCOTN 33B and three nontransgenic varieties (DP5415, Zhongmian12, and Shiyuan321) during the season, although the survival of larvae on NuCOTN 33B seemed significantly reduced. High larval densities observed on non-Bt cotton appeared in great contrast to the low larval populations observed on NuCOTN 33B plants during the seasons. In an environment without insecticide sprays, the annual ginned cotton yields in NuCOTN 33B plots, ranging from 1391.17 to 1511.35 kg/ha, were significantly higher than those in non-Bt cotton (340.34-359.58 kg/ha). These high levels of field efficacy for NuCOTN 33B against H. armigera in northern China may pave the way for reduced pesticide applications and an expansion of alternative pest-control strategies.  相似文献   
77.
The repair of DNA interstrand cross-links (ICLs) remains largely ill-defined in higher eukaryotic cells. Previously, we have developed assays that can be used to monitor the early stages of processing of ICLs in vitro. Here, we have used P11 phosphocellulose chromatography to fractionate HeLa nuclear extracts and have subsequently reconstituted these assays with the resulting fractions. RPA and PCNA were found in a single fraction, and were the only factors in this fraction required for the reconstitution of these assays. The roles of RPA and PCNA in the formation of incisions at ICLs and in the subsequent DNA synthesis step were assessed. RPA was found to be essential for both stages of ICL processing indicating that it is required for lesion recognition and/or for the subsequent endonucleolytic processing. PCNA is required for the DNA synthesis stage and although it is not critical for the incision stage of the reaction it does enhance this step presumably by a stimulation of lesion recognition by MutSbeta. These findings define novel roles for RPA and PCNA in the processing of ICLs in mammalian cells.  相似文献   
78.
79.
80.
The activation of the muscarinic acetylcholine receptor (mAChR) family, consisting of five subtypes (M1-M5), produces a variety of physiological effects throughout the central nervous system. However, the role of each individual subtype remains poorly understood. To further elucidate signal transduction pathways for specific subtypes, we used the most divergent portion of the subtypes, the intracellular third (i3) loop, as bait to identify interacting proteins. Using a brain pull-down assay, we identify elongation factor 1A2 (eEF1A2) as a specific binding partner to the i3 loop of M4, and not to M1 or M2. In addition, we demonstrate a direct interaction between these proteins. In the rat striatum, the M4 mAChR colocalizes with eEF1A2 in the soma and neuropil. In PC12 cells, endogenous eEF1A2 co-immunoprecipitates with the endogenous M4 mAChR, but not with the endogenous M1 mAChR. In our in vitro model, M4 dramatically accelerates nucleotide exchange of eEF1A2, a GTP-binding protein. This indicates the M4 mAChR is a guanine exchange factor for eEF1A2. eEF1A2 is an essential GTP-binding protein for protein synthesis. Thus, our data suggest a novel role for M4 in the regulation of protein synthesis through its interaction with eEF1A2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号