首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4894篇
  免费   387篇
  国内免费   2篇
  2023年   26篇
  2022年   43篇
  2021年   86篇
  2020年   52篇
  2019年   74篇
  2018年   82篇
  2017年   75篇
  2016年   140篇
  2015年   267篇
  2014年   275篇
  2013年   283篇
  2012年   445篇
  2011年   397篇
  2010年   259篇
  2009年   229篇
  2008年   302篇
  2007年   295篇
  2006年   272篇
  2005年   270篇
  2004年   257篇
  2003年   252篇
  2002年   232篇
  2001年   46篇
  2000年   24篇
  1999年   64篇
  1998年   65篇
  1997年   40篇
  1996年   38篇
  1995年   44篇
  1994年   47篇
  1993年   32篇
  1992年   29篇
  1991年   21篇
  1990年   16篇
  1989年   26篇
  1988年   11篇
  1987年   21篇
  1986年   12篇
  1985年   11篇
  1984年   17篇
  1983年   22篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   16篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有5283条查询结果,搜索用时 15 毫秒
71.
Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.  相似文献   
72.
Pathogenic microbes have evolved sophisticated molecular strategies to subvert host defenses. Here we show that virulent bacteria interfere directly with Toll-like receptor (TLR) function by secreting inhibitory homologs of the Toll/interleukin-1 receptor (TIR) domain. Genes encoding TIR domain containing-proteins (Tcps) were identified in Escherichia coli CFT073 (TcpC) and Brucella melitensis (TcpB). We found that TcpC is common in the most virulent uropathogenic E. coli strains and promotes bacterial survival and kidney pathology in vivo. In silico analysis predicted significant tertiary structure homology to the TIR domain of human TLR1, and we show that the Tcps impede TLR signaling through the myeloid differentiation factor 88 (MyD88) adaptor protein, owing to direct binding of Tcps to MyD88. Tcps represent a new class of virulence factors that act by inhibiting TLR- and MyD88-specific signaling, thus suppressing innate immunity and increasing virulence.  相似文献   
73.
Phosphofructokinase (EC 2.7.1.11) and aldolase (EC 4.1.2.13) have been highly purified from Saccharomyces cerevisiae by improved protocols. Partitioning of the enzymes in aqueous polymer two-phase systems was used to detect complex formation. The partition of each enzyme was found to be affected by the presence of the other enzyme. AMP affected the partition of the individual enzymes as well as the mixture of the two. The activities of the respective enzymes were stimulated in the putative complex in an AMP-dependent manner. Two strictly conserved residues belonging to an acidic surface loop of class II aldolases, are a potential site for electrostatic interaction with the positively charged regions close to the active site in phosphofructokinase.  相似文献   
74.
75.
BACKGROUND AND AIMS: In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS: mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS: TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS: Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.  相似文献   
76.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   
77.
Flash-induced photosynthetic oxygen evolution was measured in cells and thylakoid preparations from the coccoid cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7942 and from the filamentous cyanobacterium Oscillatoria chalybea. The resulting characteristic flash patterns from these cyanobacteria can be chemically altered by addition of exogenously added substances like CCCP, DCPiP and inorganic salts. Potassium chloride, manganese sulfate and calcium chloride affected the sequences by specific increases in the flash yield and/or effects on the transition parameters. Chloride appeared to exert the strongest stimulatory effect on the oxygen yield. In comparison to chloride, both manganese and calcium did not significantly stimulate the flash amplitudes as such, but improved the functioning of the oxygen evolving complex by decreasing the miss parameter alpha. Particular effects were observed with respect to the time constants of the relaxation kinetics of the first two flash signals Y1/Y2 of the cyanobacterial patterns. In the presence of the investigated chemicals the amplitudes of the first two flash signals (Y2 in particular) were increased and the relaxation kinetics were enhanced so that the time constant became about identical to the conditions of steady state oxygen flash amplitudes. The results provide further evidence against a possible participation of either PS I or respiratory processes to Y1/Y2 of cyanobacterial flash patterns. Dramatic effects were observed when protoplasts from Oscillatoria chalybea or cells from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7942 were exposed to weak far red background illumination. Under these conditions, Y2 (and to a smaller extent Y1) of otherwise unchanged flash sequences were specifically modified. Y2 was substantially increased and again the relaxation kinetics were accelerated making the signal indistinguishable from a Y(SS) signal. From the mathematical fit of the sequences we conclude that S2 contributes to 10-20% of the S-state distribution (in comparison to 0% in the control). Thus, far red background illumination might represent a valuable means for photosynthetic investigations where high amounts of S2 are required like e. g. EPR measurements. In such experiments the corresponding EPR signals appeared substantially enhanced following far red preillumination (Ahrling and Bader, unpublished observations). Our results clearly show that the 'controversial results' from parts of the literature suggesting the participation of different mechanisms (net oxygen evolution, inhibited uptake processes etc.) are not required to explain the flash-induced oxygen evolution in cyanobacteria: the seemingly 'incompatible' conditions and conformations can be perfectly interconverted by different modulation techniques (chemicals, far red) of the respective redox condition within the water oxidation complex of photosynthesis.  相似文献   
78.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   
79.
Prokaryotic toxin-antitoxin stress response loci   总被引:11,自引:0,他引:11  
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.  相似文献   
80.
BceRS and PsdRS are paralogous two‐component systems in Bacillus subtilis controlling the response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, respectively, the two response regulators (RRs) bind their target promoters, PbceA or PpsdA, resulting in a strong up‐regulation of target gene expression and ultimately antibiotic resistance. Despite high sequence similarity between the RRs BceR and PsdR and their known binding sites, no cross‐regulation has been observed between them. We therefore investigated the specificity determinants of PbceA and PpsdA that ensure the insulation of these two paralogous pathways at the RR–promoter interface. In vivo and in vitro analyses demonstrate that the regulatory regions within these two promoters contain three important elements: in addition to the known (main) binding site, we identified a linker region and a secondary binding site that are crucial for functionality. Initial binding to the high‐affinity, low‐specificity main binding site is a prerequisite for the subsequent highly specific binding of a second RR dimer to the low‐affinity secondary binding site. In addition to this hierarchical cooperative binding, discrimination requires a competition of the two RRs for their respective binding site mediated by only slight differences in binding affinities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号