首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   35篇
  436篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   1篇
  2019年   5篇
  2018年   8篇
  2017年   15篇
  2016年   10篇
  2015年   25篇
  2014年   24篇
  2013年   28篇
  2012年   30篇
  2011年   27篇
  2010年   18篇
  2009年   12篇
  2008年   24篇
  2007年   14篇
  2006年   18篇
  2005年   15篇
  2004年   20篇
  2003年   26篇
  2002年   17篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   7篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
91.
Exposure of monocytes and macrophages to endotoxin/lipopolysaccharide (LPS) from Gram-negative bacteria activates the NF-κB signaling pathway. At early times, this leads to their production of proinflammatory cytokines, but subsequently, they produce anti-inflammatory interleukin-10 (IL-10) to quell the immune response. LPS-mediated induction of IL10 gene expression requires the p40 isoform of the RNA-binding protein AUF1. As LPS exerts modest effects upon IL10 mRNA stability, we hypothesized that AUF1 controls the expression of signaling proteins. Indeed, knockdown of AUF1 impairs LPS-mediated p38 mitogen-activated protein kinase (MAPK) and NF-κB signaling, and the expression of an RNA interference-refractory p40(AUF1) cDNA restores both signaling pathways. To define the molecular mechanisms by which p40(AUF1) controls IL10 expression, we focused on the NF-κB pathway in search of AUF1-regulated targets. Here, we show that p40(AUF1) serves to maintain proper levels of the kinase TAK1 (transforming growth factor-β-activated kinase), which phosphorylates the IKKβ subunit within the IκB kinase complex to activate NF-κB-regulated genes. However, p40(AUF1) does not control the TAK1 mRNA levels but instead promotes the translation of the mRNA. Thus, p40(AUF1) regulates a critical node within the NF-κB signaling pathway to permit IL10 induction for the anti-inflammatory arm of an innate immune response.  相似文献   
92.
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.  相似文献   
93.
94.
95.
In ischemia, cardiac sympathetic nerve endings (cSNE) release excessive amounts of norepinephrine (NE) via the nonexocytotic Na(+)-dependent NE transporter (NET). NET, normally responsible for NE reuptake into cSNE, reverses in myocardial ischemia, releasing pathological amounts of NE. This carrier-mediated NE release can be triggered by elevated intracellular Na(+) levels in the axoplasm. The fact that ischemia activates the intracellular pH regulatory Na(+)/H(+) exchanger (NHE) in cSNE is pivotal in increasing intraneuronal Na(+) and thus activating carrier-mediated NE release. Angiotensin (ANG) II levels are also significantly elevated in the ischemic heart. However, the effects of ANG II on cSNE, which express the ANG II receptor, AT(1)R, are poorly understood. We hypothesized that ANG II-induced AT(1)R activation in cSNE may be positively coupled to NHE activity and thereby facilitate the pathological release of NE associated with myocardial ischemia. We tested this hypothesis in a cSNE model, human neuroblastoma cells stably transfected with rat recombinant AT(1A) receptor (SH-SY5Y-AT(1A)). SH-SY5Y-AT(1A) constitutively expresses amiloride-sensitive NHE and the NET. NHE activity was assayed in BCECF-loaded SH-SY5Y-AT(1A) as the rate of the Na(+)-dependent alkalinization in response to an acute acidosis. ANG II activation of AT(1)R markedly increased NHE activity in SH-SY5Y-AT(1A) via a Ca(2+)-dependent pathway and promoted carrier-mediated NE release. In addition, in guinea pig cSNE expressing native AT(1)R, ANG II elicited carrier-mediated NE release. In SH-SY5Y-AT(1A) and cSNE, amiloride inhibited the ANG II-mediated release of NE. Our results provide a link between AT(1)R and NHE in cSNE, which can exacerbate carrier-mediated NE release during protracted myocardial ischemia.  相似文献   
96.
This correspondence describes the successful development of methods for the recovery, isolation and detection of Cryptosporidium oocysts in wastewater and biosolids. Wastewater from one plant was used to optimize methods in raw influent as well as primary, secondary and tertiary effluents. Raw influents and primary effluents were concentrated using centrifugation followed by isolation of Cryptosporidium oocysts using immunomagnetic separation (IMS) and detection of recovered organisms using epifluorescence microscopy. Mean oocyst recovery in raw influent was 29.2+/-12.8% and 38.8+/-27.9% in primary effluent at three sample volumes tested. Secondary and tertiary effluents were analyzed using a modified Method 1622 resulting in mean oocyst recoveries of 53.0+/-19.2% and 67.8+/-4.4%, respectively. In biosolids with approximately 10% total solids, mean oocyst recovery was 43.9+/-10.1% using IMS with a 5 g (wet weight) sample size. Due to the variability in these matrices, an internal microbiological standard was incorporated to serve as a tool for method performance.  相似文献   
97.
The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.  相似文献   
98.
The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 microm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. To eliminate any effects of physical and chemical heterogeneity on bacterial transport and thus isolate the biological effect, the two strains were simultaneously injected into the same core. DA001 cells were metabolically labeled with (35)S and tagged with a vital fluorescent stain, while OYS2-A cells were metabolically labeled with (14)C. The fast decay of (35)S allowed deconvolution of the two isotopes (and therefore the two strains). Dramatic differences in the transport behaviors were observed. The breakthrough of DA001 and the breakthrough of OYS2-A both occurred before the breakthrough of a conservative tracer (termed differential advection), with effluent recoveries of 55 and 30%, respectively. The retained bacterial concentration of OYS2-A in the sediment was twofold higher than that of DA001. Among the cell properties analyzed, the statistically significant differences between the two strains were cell length and diameter. The shorter, larger-diameter DA001 cells displayed a higher effluent recovery than the longer, smaller-diameter OYS2-A cells. CXTFIT modeling results indicated that compared to the DA001 cells, the OYS2-A cells experienced lower pore velocity, higher porosity, a higher attachment rate, and a lower detachment rate. All these factors may contribute to the observed differences in transport.  相似文献   
99.
100.
Hansen  Randi A. 《Plant and Soil》1999,209(1):37-45
The contribution of microarthropod activity to litter decomposition varies widely but can be substantial. Oribatid mites are the most diverse and abundant of the microarthropod groups in forest litter. This experiment was designed to examine the effect of litter type and complexity on the diversity and species composition of oribatid mites, and to test whether alterations in species composition due to litter type affected litter decomposition. In an array of plots on a mixed-hardwood site in the mountains of North Carolina, I exposed microarthropod assemblages to a range of litter types: yellow birch, sugar maple, red oak and two mixed litters. Over several years, the litter types selected oribatid mite assemblages of different species composition. By comparing the decomposition of consecutive cohorts of litter, it was possible to detect differences in decomposition accompanying the shifts in the assemblage. A comparison of the mass loss rates between the two litter cohorts over eighteen months reveals similar trajectories for four litter types. In the oak litter, however, the second cohort disappeared significantly faster than the first. In both years, the litters came from the same trees and were nearly identical in initial carbon and nitrogen contents. Since the response was specific to oak litter, it is unlikely that differences in environmental factors are responsible for the faster mass loss of oak. A significant increase of endophagous oribatid mites, those that burrow into plant material, in the second cohort of oak may account for its accelerated decomposition. The woody petioles and thick leaf-planes of oak leaves provide microhabitats for burrowing mites. Endophage activity can accelerate the litter decomposition both through direct comminution of leaf material and by facilitating microbial growth. Because of their low population growth rates, oribatid populations that are reduced by disturbance are slow to recover and by disrupting these non-resilient populations, disturbance may have long-term repercussions for decomposition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号