首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11113篇
  免费   1348篇
  国内免费   3篇
  2021年   124篇
  2020年   84篇
  2019年   101篇
  2018年   122篇
  2017年   118篇
  2016年   196篇
  2015年   295篇
  2014年   333篇
  2013年   451篇
  2012年   542篇
  2011年   521篇
  2010年   310篇
  2009年   330篇
  2008年   476篇
  2007年   455篇
  2006年   469篇
  2005年   466篇
  2004年   454篇
  2003年   385篇
  2002年   397篇
  2001年   326篇
  2000年   303篇
  1999年   268篇
  1998年   180篇
  1997年   155篇
  1996年   134篇
  1995年   133篇
  1994年   110篇
  1993年   135篇
  1992年   225篇
  1991年   220篇
  1990年   194篇
  1989年   198篇
  1988年   203篇
  1987年   184篇
  1986年   153篇
  1985年   167篇
  1984年   145篇
  1983年   121篇
  1982年   126篇
  1981年   122篇
  1980年   107篇
  1979年   176篇
  1978年   143篇
  1977年   106篇
  1976年   106篇
  1975年   92篇
  1974年   90篇
  1973年   107篇
  1972年   89篇
排序方式: 共有10000条查询结果,搜索用时 462 毫秒
911.
Suprachiasmatic nucleus organization   总被引:13,自引:0,他引:13  
The suprachiasmatic nucleus (SCN) of the hypothalamus is a dominant circadian pacemaker in the mammalian brain controlling the rest-activity cycle and a series of physiological and endocrine functions to provide a foundation for the successful elaboration of adaptive sleep and waking behavior. The SCN is anatomically and functionally organized into two subdivisions: (1) a core that lies adjacent to the optic chiasm, comprises predominantly neurons producing vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP) colocalized with GABA and receives dense visual and midbrain raphe afferents, and (2) a shell that surrounds the core, contains a large population of arginine vasopressin (AVP)-producing neurons in its dorsomedial portion, and a smaller population of calretinin (CAR)-producing neurons dorsally and laterally, colocalized with GABA, and receives input from non-visual cortical and subcortical regions. In this paper, we present a detailed quantitative analysis of the organization of the SCN core and shell in the rat and place this in the context of the functional significance of the subdivisions in the circadian control of regulatory systems.  相似文献   
912.
The NR1I subfamily of nuclear receptors contains a phylogenetically diverse array of receptors related to the mammalian pregnane X receptor (PXR) (NR1I2) and constitutive androstane receptor (CAR) (NR1I3). We have carried out an extensive comparative analysis of this subgroup with representatives from fish, birds, amphibians, and mammals. Four novel receptors were isolated from fish, dog, pig, and monkey for this study and combined with a previously reported set of related receptors including human PXR, rabbit PXR, mouse PXR, chicken CXR, frog benzoate X receptors (BXRalpha, BXRbeta), and human and mouse CAR. A broad range of xenobiotics, steroids, and bile acids were tested for their ability to activate the ligand binding domain of each receptor. Three distinct groups of receptors were identified based on their pharmacological profiles: 1) the PXRs were activated by a broad range of xenobiotics and, along with the mammalian PXRs, included the chicken and fish receptors; 2) the CARs were less promiscuous, had high basal activities, and were generally repressed rather than activated by those compounds that modulated their activity; and 3) the BXRs were selectively activated by a subset of benzoate analogs and are likely to be specialized receptors for this chemical class of ligands. The PXRs are differentiated from the other NR1I receptors by a stretch of amino acids between helices 1 and 3, which we designate the H1-3 insert. This insert was present in the mammalian, chicken, and fish PXRs but absent in the CARs and BXRs. Modeling studies suggest that the H1-3 insert contributes to the promiscuity of the PXRs by facilitating the unwinding of helices-6 and -7, thereby expanding the ligand binding pocket.  相似文献   
913.
914.
A homologous hamster relaxin RIA was developed to evaluate plasma and tissue concentrations of relaxin in the latter half of pregnancy in this species. Relaxin protein and mRNA were localized using antibodies developed to synthetic hamster relaxin and gene-specific molecular probes, respectively. Molecular weight and isoelectric point of the synthetic and native hormones were identical by electrophoretic methods, and synthetic hamster relaxin was active in the mouse interpubic ligament bioassay. Synthetic hormone was used as tracer and standard with rabbit antiserum to the synthetic hormone in the RIA. Relaxin was assayed in blood samples recovered from the retro-orbital plexus on Days 6, 8, 10, 12, 14, 15, and 16 of gestation and on Days 1 and 5 postpartum. Relaxin was first detected on Day 8 of gestation (3.7 +/- 0.6 ng/ml), increased to reach a maximum in the evening of Day 15 (826.0 +/- 124.0 ng/ml), and decreased by Day 16 (day of parturition). Relaxin concentrations were assayed in aqueous extracts of implantation sites (Days 6, 8, and 10) and chorioallantoic placentae (Days 12, 14, and 15). Concentrations were low on Day 6 (0.02 +/- 0.001 microg/g tissue), increased to Day 15 (6.96 +/- 0.86 microg/g tissue), and subsequently declined by the evening of Day 15. Relaxin protein and mRNA were localized to primary and secondary giant trophoblast cells in the chorioallantoic placental trophospongium. However, relaxin protein was not localized in ovaries of pregnant animals or oviductal tissues of cycling animals. Significant quantities of relaxin were detected in the serum of fetal hamsters recovered on Day 15.  相似文献   
915.
Molecular dynamics (MD) simulations have been carried out on bundles of the channel-forming transmembrane (TM) domain of the viral protein U (VPU(1-27) and VPU(6-27)) from the human immunodeficiency virus (HIV-1). Simulations of hexameric and pentameric bundles of VPU(6-27) in an octane/water membrane mimetic system suggested that the pentamer is the preferred oligomer. Accordingly, an unconstrained pentameric helix bundle of VPU(1-27) was then placed in a hydrated palmitoyl-oleyl-3-n-glycero-phosphatidylethanolamine (POPE) lipid bilayer and its structural properties calculated from a 3-ns MD run. Some water molecules, initially inside the channel lumen, were expelled halfway through the simulation and the bundle adopted a conical structure reminiscent of previous MD results obtained for VPU(6-27) in an octane/water system. The pore constriction generated may correspond to a closed state of the channel and underlies the relocation of the W residue toward the pore lumen. The relative positions of the helices with respect to the bilayer and their interactions with the lipids are discussed. The observed structure is stabilized via specific interactions between the VPU helices and the carbonyl oxygen atoms of the lipid molecules, particularly at the Q and S residues.  相似文献   
916.
We report the first stopped-flow fluorescence analysis of transition metal binding (Co(2+), Ni(2+), Cu(2+), and Zn(2+)) to the H-N-H endonuclease motif within colicin E9 (the E9 DNase). The H-N-H consensus forms the active site core of a number of endonuclease groups but is also structurally homologous to the so-called treble-clef motif, a ubiquitous zinc-binding motif found in a wide variety of metalloproteins. We find that all the transition metal ions tested bind via multistep mechanisms. Binding was further dissected for Ni(2+) and Zn(2+) ions through the use of E9 DNase single tryptophan mutants, which demonstrated that most steps reflect conformational rearrangements that occur after the bimolecular collision, many common to the two metals, while one appears specific to zinc. The kinetically derived equilibrium dissociation constants (K(d)) for transition metal binding to the E9 DNase agree with previously determined equilibrium measurements and so confirm the validity of the derived kinetic mechanisms. Zn(2+) binds tightest to the enzyme (K(d) approximately 10(-)(9) M) but does not support endonuclease activity, whereas the other metals (K(d) approximately 10(-)(6) M) are active in endonuclease assays implying that the additional step seen for Zn(2+) traps the enzyme in an inactive but high affinity state. Metal-induced conformational changes are likely to be a conserved feature of H-N-H/treble clef motif proteins since similar Zn(2+)-induced, multistep binding was observed for other colicin DNases. Moreover, they appear to be independent both of the conformational heterogeneity that is naturally present within the E9 DNase at equilibrium, as well as the conformational changes that accompany the binding of its cognate inhibitor protein Im9.  相似文献   
917.
Hepatocyte growth factor (HGF) is a mesenchymal-derived cytokine. It exerts in vitro a motogenic effect on various target cells, which is displayed either by cell scattering, locomotion, and migration during the wound repair process of cultured cells, or invasiveness through the extracellular matrix. Although it is known that HGF influences the motogenic effect of endothelial cells, the precise effects of HGF during angiogenesis are still poorly understood. To identify genes regulated via HGF signaling in HUVECs, we used the differential display polymerase chain reaction. In this study, thymosin beta4 was found to be differentially expressed in HGF-treated HUVECs compared with control. Data from HPLC profile and induction of MMPs indicate that HGF may affect the biological behavior of HUVECs through a combination of the direct effects of HGF itself and indirect effects mediated via induction of thymosin beta4 in vitro.  相似文献   
918.
Rran-dependent nuclear transport requires a nuclear pool of RanGTP both for the assembly of export complexes and the disassembly of import complexes. Accordingly, in order for these processes to proceed, Ran-dependent nuclear import and export assays in vitro require the addition of GTP to produce RanGTP. Notably, no ATP requirement can be detected for these transport processes in vitro. But in vivo, when cells are depleted of ATP by the addition of sodium azide and 2-deoxyglucose to block ATP production by oxidative phosphorylation and glycolysis, respectively, Ran-dependent nuclear import and export are rapidly inhibited. This raised the question of whether there is an ATP requirement for these nuclear transport pathways in an intact cell that has remained undetected in vitro. Here we report that the free (but not total) GTP concentration rapidly drops to an undetectable level upon ATP depletion as does the availability of RanGTP. Our conclusion is that the inhibition of Ran-dependent nuclear transport observed upon ATP depletion in vivo results from a shortage of RanGTP rather than the inhibition of some ATP-dependent process.  相似文献   
919.
Pre-mRNA splicing: awash in a sea of proteins   总被引:1,自引:0,他引:1  
What's in a spliceosome? More than we ever imagined, according to recent reports employing proteomics techniques to analyze this multi-megadalton machine. As of 1999, around 100 splicing factors were identified (Burge et al., 1999); however, that number has now nearly doubled due primarily to improved purification of spliceosomes coupled with advances in mass spectrometry analyses of complex mixtures. Gratifyingly, most of the previously identified splicing factors were found in the recent mass spec studies. Nonetheless, the number of new proteins emerging with no prior connection to splicing was surprising. Without functional validation, it would be premature to label these proteins as bona fide splicing factors. Yet many were identified multiple times in complexes purified under diverse conditions or from different organisms. Another recurring theme regards the dynamic nature of spliceosomal complexes, which may be even more intricate than previously thought.  相似文献   
920.
Cysteinyl-leukotrienes and the liver   总被引:3,自引:0,他引:3  
Leukotrienes are potent biological mediators implicated in an increasing number of disease processes. This review outlines the basic biology of leukotrienes and discusses recent developments in our understanding of the specific role of cysteinyl-leukotrienes (cLTs) in cholestasis, hepatic inflammation, portal hypertension, and the pathogenesis of the hepatorenal syndrome (HRS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号