全文获取类型
收费全文 | 1626篇 |
免费 | 116篇 |
专业分类
1742篇 |
出版年
2023年 | 19篇 |
2022年 | 27篇 |
2021年 | 60篇 |
2020年 | 34篇 |
2019年 | 42篇 |
2018年 | 50篇 |
2017年 | 39篇 |
2016年 | 53篇 |
2015年 | 63篇 |
2014年 | 95篇 |
2013年 | 89篇 |
2012年 | 100篇 |
2011年 | 114篇 |
2010年 | 68篇 |
2009年 | 54篇 |
2008年 | 83篇 |
2007年 | 76篇 |
2006年 | 67篇 |
2005年 | 59篇 |
2004年 | 59篇 |
2003年 | 54篇 |
2002年 | 55篇 |
2001年 | 36篇 |
2000年 | 33篇 |
1999年 | 30篇 |
1998年 | 12篇 |
1997年 | 14篇 |
1996年 | 8篇 |
1995年 | 8篇 |
1994年 | 9篇 |
1992年 | 24篇 |
1991年 | 16篇 |
1990年 | 11篇 |
1989年 | 10篇 |
1988年 | 7篇 |
1987年 | 13篇 |
1986年 | 12篇 |
1985年 | 7篇 |
1984年 | 14篇 |
1983年 | 14篇 |
1982年 | 7篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1979年 | 9篇 |
1978年 | 9篇 |
1974年 | 6篇 |
1973年 | 5篇 |
1972年 | 7篇 |
1971年 | 6篇 |
1968年 | 6篇 |
排序方式: 共有1742条查询结果,搜索用时 0 毫秒
71.
Gregory M. Crutsinger Seth M. Rudman Mariano A. Rodriguez‐Cabal Athena D. McKown Takuya Sato Andrew M. MacDonald Julian Heavyside Armando Geraldes Edmund M. Hart Carri J. LeRoy Rana W. El‐Sabaawi 《Molecular ecology》2014,23(23):5888-5903
A ‘genes‐to‐ecosystems’ approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome‐wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These ‘after‐life’ effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic–terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes. 相似文献
72.
Tom V. Lee Maya K. Sethi Jessica Leonardi Nadia A. Rana Falk F. R. Buettner Robert S. Haltiwanger Hans Bakker Hamed Jafar-Nejad 《PLoS genetics》2013,9(6)
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch. 相似文献
73.
Aurosikha Das Manaswini Ghosh Pulkit Kr. Gupta Soumendra Rana 《Journal of cellular biochemistry》2023,124(2):266-281
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a–C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions. 相似文献
74.
Rana Dajani Raja Fathallah Ala Arafat Mohammed Emad AbdulQader Nancy Hakooz Yousef Al-Motassem Mohammad El-Khateeb 《Biochemical genetics》2013,51(9-10):780-788
Methylenetetrahydrofolate reductase (MTHFR) C677T single nucleotide polymorphism is a major inherited risk factor of venous thromboembolism. We sought to determine its prevalence in genetically isolated populations of Chechens and Circassians in Jordan. The MTHFR C677T mutation was analyzed from blood samples taken from 120 random unrelated Chechens and 72 Circassians. The prevalence of the MTHFR mutation in the Chechen population was 27.5% (allele frequency 15%); the prevalence among the Circassians was 50% (allele frequency 29.2%). The prevalence in the Chechen population is similar to that in Jordan and other world populations, but it is higher in the Circassian population. This study will contribute to understanding the interaction between genetic and environmental risk factors underlying thrombosis and will be useful in deciding which genetic variants should be tested in a clinical genetic testing service. 相似文献
75.
B. K. Binukumar Varsha Shukla Niranjana D. Amin Preethi Reddy Suzanne Skuntz Philip Grant Harish C. Pant 《Histochemistry and cell biology》2013,140(1):23-32
The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs. 相似文献
76.
Changes in carbohydrate and lipid metabolism during embryonic development inAntheraea mylitta were studied. While carbohydrates were metabolized during early embryogenesis, lipids were catabolised at the later stages.
A significant increase in both total carbohydrates and glycogen on days 5 and 6 suggested the concurrent occurrence of both
gluconeogenesis and glycogenesis. As the development of the embryo proceeds, both lipids and carbohydrates were utilised,
resulting in the increase in the concentration of citrate, pyruvate and lactate. 相似文献
77.
Rhizobium sp. SIN-1, a nitrogen-fixing symbiont of Sesbania aculeata and other tropical legumes, carries two copies of nodD, both on a sym plasmid. We have isolated these two nodD genes by screening a genomic library of Rhizobium sp. SIN-1 with a nodD probe from Sinorhizobium meliloti. Nucleotide sequence and the deduced amino acid sequence analysis indicated that the nodD genes of Rhizobium sp. SIN-1 are most closely related to those of R. tropici and Azorhziobium caulinodans. Rhizobium sp. SIN-1 nodD1 complemented a S. meliloti nodD1D2D3 negative mutant for nodulation on alfalfa, but failed to complement a nodD1 mutant of S. fredii USDA191 for soybean nodulation. A hybrid nodD gene, containing the N-terminus of S. fredii USDA191 nodD1 and the C-terminus of Rhizobium sp. SIN-1 nodD1, complemented the nodD1 negative mutant of USDA191 for nodulation on soybean.
Received: 17 January 2002 / Accepted: 18 February 2002 相似文献
78.
The beneficial effect of seed priming in improving critical growth stages like seed germination and early growth phases has been accepted by Plant Physiologists for many important field crops. In the present investigation, studies were made to see the effect of heavy metal stress imposed during germination using solution of HgCl2 in four different concentrations (0.0, 0.50, 0.75 and 1.00 mM) in Petri dishes on primed and non-primed seeds of wheat. Priming has been done with distilled water (hydro), Mg(NO3)2 and Ca(NO3)2 (halo) salts. Different germination parameters, such as germination percentage, radicle and plumule lengths, seedling emergence, soluble and insoluble sugar contents and activity of α-amylase in endosperm were studied at different study periods. Primed seeds increased all the germination parameters except insoluble sugar content in respect to non-primed control in the absence of HgCl2. However, the use of primed seeds has shown to overcome the inhibitory effects of heavy metal stress imposed in the form of HgCl2 solution during the period of germination. Hence, the work concludes the mitigating effects of priming under heavy metal stress. 相似文献
79.
Sreevidya Santha Navin Viswakarma Subhasis Das Ajay Rana Basabi Rana 《The Journal of biological chemistry》2015,290(36):21865-21875
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of β-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACCS79 (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and β-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer. 相似文献
80.
Razia Sultana Rizwan Arif Manish Rana Saiema Ahmedi Rabiya Mehandi Akrema Nikhat Manzoor Rahisuddin 《Luminescence》2022,37(3):408-421
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine; the structural confirmation was supported by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared spectroscopy, and liquid chromatography-mass spectrometry. Its sensing ability towards Ni2+ ion was examined showing a binding constant of 1.04 × 105 compared with other suitable metal cations (Ca2+, Co2+, Cr3+, Ag+, Pb2+, Fe3+, Mg2+, and K+) using ultraviolet–visible (UV–vis) and fluorescence spectroscopic studies. The minimum concentration of Ni2+ ions and limit of detection was found to be 9.4 μM. A job's plot gave the binding stoichiometry ratio of oxadiazole derivative 2 vs Ni2+ ions as 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with calf thymus DNA was supported by ultraviolet–visible (UV–vis) and fluorescent light, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gave the binding score for oxadiazole derivative 2 as −6.5 kcal/mol, which further confirmed the intercalative interaction. In addition, the antifungal activity of oxadiazole derivative 2 was also screened against several fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion methods. In antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against 2,2-diphenyl-1-picrylhydrazyl and H2O2 free radicals. 相似文献