全文获取类型
收费全文 | 2218篇 |
免费 | 210篇 |
国内免费 | 234篇 |
专业分类
2662篇 |
出版年
2024年 | 13篇 |
2023年 | 51篇 |
2022年 | 98篇 |
2021年 | 155篇 |
2020年 | 110篇 |
2019年 | 112篇 |
2018年 | 120篇 |
2017年 | 90篇 |
2016年 | 127篇 |
2015年 | 174篇 |
2014年 | 200篇 |
2013年 | 183篇 |
2012年 | 193篇 |
2011年 | 188篇 |
2010年 | 96篇 |
2009年 | 107篇 |
2008年 | 119篇 |
2007年 | 103篇 |
2006年 | 84篇 |
2005年 | 85篇 |
2004年 | 63篇 |
2003年 | 37篇 |
2002年 | 36篇 |
2001年 | 13篇 |
2000年 | 7篇 |
1999年 | 15篇 |
1998年 | 9篇 |
1997年 | 9篇 |
1996年 | 2篇 |
1995年 | 15篇 |
1994年 | 6篇 |
1993年 | 9篇 |
1992年 | 8篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有2662条查询结果,搜索用时 12 毫秒
101.
呼吸道合胞病毒(RSV)是导致婴幼儿严重下呼吸道感染的最重要病原体,但该病毒的灭活疫苗可引起RSV疫苗增强性疾病(RVED)。RVED的机制目前仍不清楚。Toll样受体(TLR)及其信号转导对 RSV的识别和宿主免疫的激发均有重要作用,其在RVED机制中的作用也日益受到关注。本文主要介绍TLR在抗RSV天然免疫和获得性免疫中的角色及其信号通路激活状态改变对RVED免疫格局的影响,提示RVED机制可能与TLR信号通路激活不足有关,从而为RSV疫苗研制提供新的策略和方法。 相似文献
102.
103.
104.
105.
目的应用HSA-P型激光检漏仪建立西林瓶包装冻干制品中氧气含量的测定方法。方法考察冻干制品中氧含量测定的操作条件:标准样瓶对仪器的校准;氮气吹扫前后样品中氧含量值的比较;不同纯度氮气吹扫标准样瓶后的氧含量值的变化。深化红外吸收法在测定西林瓶包装冻干疫苗中氧含量的应用。结果将该方法用于检测A群C群脑膜炎球菌多糖疫苗400批、麻疹减毒活疫苗86批、乙型脑炎减毒活疫苗46批,氧含量分别为1.64%±1.99%、1.36%±1.64%和0.99%±1.58%。结论该法测定冻干疫苗中的氧含量具有灵敏度高、速度快和易操作的优点,为冻干制品真空度的测定提供了定量检测方法。 相似文献
106.
107.
Ronny Martinez Felix Jakob Ran Tu Petra Siegert Karl‐Heinz Maurer Ulrich Schwaneberg 《Biotechnology and bioengineering》2013,110(3):711-720
Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (Kcat) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5‐fold increased specific activity (15°C) and over 100 times prolonged half‐life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity‐altering amino acid substitutions were from non‐charged to non‐charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions. Biotechnol. Bioeng. 2013; 110: 711–720. © 2012 Wiley Periodicals, Inc. 相似文献
108.
Fang Wang Bei Liu Zhou Yu Tong Wang Yajuan Song Ran Zhuang Yonghong Wu Yingjun Su Shuzhong Guo 《Journal of molecular histology》2018,49(3):277-287
Diabetes is a condition that causes delayed wound healing and results in chronic wounds. CD100 has been reported to promote and induce potent and obvious angiogenesis both in vivo and in vitro studies, the absence of which are a main cause of the diabetic chronic wound. In the present study, we investigated the effects of application of soluble CD100 on wound healing in diabetic mice. Four 5-mm full-thickness dermal wounds were made on each male db/db mouse. 12 mice from CD100 group were subcutaneously injected with 250 ng of CD100 (50 µl) per wound, in addition, 12 mice were injected with the same volume phosphate-balanced solution as the control. The animals were treated every other day until the wounds healed completely. Images were obtained to calculate the area ratio of the original area. HE and Masson’s trichrome staining were used for histological examination. Collagen remodeling, angiogenesis and wound bed inflammation were evaluated by immunohistochemical staining and western blot. We demonstrated that CD100 had distinct functions during the wound healing process. Histological and western blotting analysis showed a more organized epithelium and dermis, more collagen fibers, higher angiogenesis and lower inflammation in the CD100 group than in the PBS group. These findings suggest that CD100 may accelerate wound healing in diabetic mice by promoting angiogenesis in the wound and by reducing the inflammatory response. 相似文献
109.
Zixun Dong Jianhua Ran Hong Zhou Jihui Chen Tianluo Lei Weiling Wang Yi Sun Guiting Lin Lise Bankir Baoxue Yang 《PloS one》2013,8(10)
Background
Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line.Methodology/Principal Findings
Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis.Conclusions/Significance
UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. 相似文献110.