首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13969篇
  免费   1161篇
  国内免费   601篇
  2023年   150篇
  2022年   289篇
  2021年   445篇
  2020年   346篇
  2019年   382篇
  2018年   440篇
  2017年   360篇
  2016年   486篇
  2015年   731篇
  2014年   808篇
  2013年   934篇
  2012年   1037篇
  2011年   971篇
  2010年   592篇
  2009年   490篇
  2008年   689篇
  2007年   660篇
  2006年   594篇
  2005年   554篇
  2004年   487篇
  2003年   469篇
  2002年   398篇
  2001年   334篇
  2000年   328篇
  1999年   289篇
  1998年   125篇
  1997年   98篇
  1996年   74篇
  1995年   72篇
  1994年   91篇
  1993年   68篇
  1992年   169篇
  1991年   147篇
  1990年   134篇
  1989年   154篇
  1988年   126篇
  1987年   113篇
  1986年   107篇
  1985年   99篇
  1984年   68篇
  1983年   75篇
  1982年   46篇
  1979年   53篇
  1977年   75篇
  1976年   47篇
  1975年   43篇
  1974年   56篇
  1973年   41篇
  1971年   40篇
  1969年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
821.
822.
The molecular mechanism of the proton pump activity by the respiratory chain bc1 complex is still unknown. This group has proposed since long time that protonation/deprotonation events in the apoproteins of the complex are cooperatively linked to the oxido-reduction reactions at the quinone catalytic centre. Protolytic residues in the apoproteins can thus provide proton transfer pathways between the bulk aqueons phases and the redox centre. A series of experiments has been carried out aimed at demonstrating a role of particular complex subunits in the pump process. In this paper recent results are reviewed which have evidenced a definite role of polypeptide carboxyl residues in the proton pump mechanism. In particular, experiments carried out with both the bovine and P. denitrificans purified enzymes have indicated a specific involvement of aspartic residue(s) in the Rieske Fe/S protein in the proton pump function.  相似文献   
823.
Interactions between subunit a and the c subunits of the Escherichia coli ATP synthase are thought to control proton translocation through the F(o) sector. In this study cysteine substitution mutagenesis was used to define the cytoplasmic ends of the first three transmembrane spans of subunit a, as judged by accessibility to 3-N-maleimidyl-propionyl biocytin. The cytoplasmic end of the fourth transmembrane span could not be defined in this way because of the limited extent of labeling of all residues between 186 and 206. In contrast, most of the preceding residues in that region, closer to transmembrane span 3, were labeled readily. The proximity of this region to other subunits in F(o) was tested by reacting mono-cysteine mutants with a photoactivated cross-linker. Residues 165, 169, 173, 174, 177, 178, and 182-184 could all be cross-linked to subunit c, but no sites were cross-linked to b subunits. Attempts using double mutants of subunit a to generate simultaneous cross-links to two different c subunits were unsuccessful. These results indicate that the cytoplasmic loop between transmembrane spans 3 and 4 of subunit a is in close proximity to at least one c subunit. It is likely that the more highly conserved, carboxyl-terminal region of this loop has limited surface accessibility due to protein-protein interactions. A model is presented for the interaction of subunit a with subunit c, and its implications for the mechanism of proton translocation are discussed.  相似文献   
824.
825.
Two different isoforms of glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) have been partially purified from barley (Hordeum vulgare L., cv. Alfeo) roots. The procedure included an ammonium sulfate step, Q-Sepharose and Reactive Blue agarose chromatography, and led to 60-fold and 150-fold purification for the two enzymes, respectively. The Glc6PDH 1 isoform accounts for 17% of total activity of the enzyme in roots, and is very sensitive to the effects of NADP+/NADPH ratio and dithiothreitol; the Glc6PDH 2 isoform is less affected by reducing power and represents 83% of the total activity. The isoforms showed distinct pH optima, isoelectric points, K m for glucose-6-phosphate and a different electrophoretic mobility. The kinetic properties for the two enzymes were affected by ATP and metabolites. Both enzymes are inhibited to different extents by ATP when magnesium is omitted from the assay mixture, whereas the addition of ATP-Mg2+ had no effect on Glc6PDH activities. The Glc6PDH isoforms are usually present in the plastids and cytosol of plant cells. To verify the intracellular locations of the enzymes purified from barley roots, Glc6PDH was purified from isolated barley root plastids; this isoform showed kinetic parameters coincident with those found for Glc6PDH 1, suggesting a plastid location; the enzyme purified from the soluble fraction had kinetic parameters resembling those of Glc6PDH 2, confirming that this isoform is present in the cytosol of barley roots. Received: 21 June 2000 / Accepted: 28 July 2000  相似文献   
826.
827.
AIMS: To purify and characterize the chitinolytic activity of Penicillium janthinellum P9 and to evaluate possible uses of the purified enzymes in the control of fungal growth and spore germination. METHODS AND RESULTS: The chitinolytic activity of P. janthinellum P9 was associated to two beta-N-acetyl-hexosaminidases (CHI1 and CHI2) that were purified by preparative isoelectric focusing and preparative electrophoresis and partially characterized. Treatment of test fungi with purified enzyme solutions caused reduced spore germination, reduction of hyphal length and mycelial damage. The combined action of the two enzymes and a systemic fungicide completely inactivated pests and food-spoiling moulds such as Fusarium solanii, P. canescens and Cladosporium cladosporioides. Treatment with the two enzymes increased germination of freeze-dried fungal spores. CONCLUSION: The chitinolytic activity of P. janthinellum P9 is associated with two extracellular beta-N-acetyl-hexosaminidases that can cause damage to the cell walls of other fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: This appears to be the first report on the characterization of extracellular chitinolytic enzymes produced by a Penicillium strain. The results of this study might have some impact in the applied research field.  相似文献   
828.
Mitochondria in exercise-induced oxidative stress   总被引:5,自引:0,他引:5  
In recent years it has been suggested that reactive oxygen species (ROS) are involved in the damage to muscle and other tissues induced by acute exercise. Despite the small availability of direct evidence for ROS production during exercise, there is an abundance of literature providing indirect support that oxidative stress occurs during exercise. The electron transport associated with the mitochondrial respiratory chain is considered the major process leading to ROS production at rest and during exercise. It is widely assumed that during exercise the increased electron flow through the mitochondrial electron transport chain leads to an increased rate of ROS production. On the other hand, results obtained by in vitro experiments indicate that mitochondrial ROS production is lower in state 3 (ADP-stimulated) than in state 4 (basal) respiration. It is possible, however, that factors, such as temperature, that are modified in vivo during intense physical activity induce changes (uncoupling associated with loss of cytochrome oxidase activity) leading to increased ROS production. The mitochondrial respiratory chain could also be a potential source of ROS in tissues, such as liver, kidney and nonworking muscles, that during exercise undergo partial ischemia because of reduced blood supply. Sufficient oxygen is available to interact with the increasingly reduced respiratory chain and enhance the ROS generation. At the cessation of exercise, blood flow to hypoxic tissues resumes leading to their reoxygenation. This mimics the ischemia-reperfusion phenomenon, which is known to cause excessive production of free radicals. Apart from a theoretical rise in ROS, there is little evidence that exercise-induced oxidative stress is due to its increased mitochondrial generation. On the other hand, if mitochondrial production of ROS supplies a remarkable contribution to exercise-induced oxidative stress, mitochondria should be a primary target of oxidative damage. Unfortunately, there are controversial reports concerning the exercise effects on structural and functional characteristics of mitochondria. However, the isolation of mitochondrial fractions by differential centrifugation has shown that the amount of damaged mitochondria, recovered in the lightest fraction, is remarkably increased by long-lasting exercise.  相似文献   
829.
As a natural consequence of the expression of the activated transforming rat Her-2/neu oncogene all mammary glands of female transgenic BALB/c (BALB-neuT) mice develop atypical epithelial hyperplasia which progresses to invasive carcinoma. A lobular carcinoma is palpable in all mammary glands of 33-week-old BALB-neuT mice. This progression is markedly delayed by systemic administration of IL-12. In a series of studies the best administration schedule, the lowest dose and the most effective administration time have been defined. The cellular and molecular mechanisms resulting in the delay of carcinogenesis have been established. By means of a series of downstream mediators IL-12 inhibits the angiogenic burst that goes along with the passage from preneoplastic to neoplastic and invasive lesions; it also recruits lymphoid cells in the mammary pad and activates their cytotoxicity towards neoplastic cells and newly formed vessels; and furthermore, it induces lymphoid cells to trigger antiangiogenic activities in neoplastic epithelial cells. Effective, low-dose and non-toxic IL-12 treatments may thus be envisaged as a possible option in the management of preneoplastic mammary lesions and in mammary cancer prevention.  相似文献   
830.
Roy DB  Rose T  Di Cera E 《Proteins》2001,43(3):315-318
Na+ binding to thrombin enhances the catalytic activity toward numerous synthetic and natural substrates. The bound Na+ is located in a solvent channel 16 A away from the catalytic triad, and connects with D189 in the S1 site through an intervening water molecule. Molecular modeling indicates that the G184K substitution in thrombin positions the protonated epsilon-amino group of the Lys side-chain to replace the bound Na+. Likewise, the G184R substitution positions the guanidinium group of the longer Arg side-chain to replace both the bound Na+ and the connecting water molecule to D189. We explored whether the G184K or G184R substitution would replace the bound Na+ and yield a thrombin derivative stabilized in the highly active fast form. Both the G184K and G184R mutants lost sensitivity to monovalent cations, as expected, but their activity toward a chromogenic substrate was compromised up to 200-fold as a result of impaired diffusion into the S1 site and decreased deacylation rate. Interestingly, both G184K and G184R substitutions compromised cleavage of procoagulant substrates fibrinogen and PAR1 more than that of the anticoagulant substrate protein C. These findings demonstrate that Na+ binding to thrombin is difficult to mimic functionally with residue side-chains, in analogy with results from other systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号