首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   8篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   17篇
  2020年   8篇
  2019年   4篇
  2018年   14篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   14篇
  2013年   22篇
  2012年   18篇
  2011年   14篇
  2010年   13篇
  2009年   4篇
  2008年   9篇
  2007年   10篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
41.
BCA2 (Rabring7, RNF115 or ZNF364) is a RING-finger E3 ubiquitin ligase that was identified as a co-factor in the restriction imposed by tetherin/BST2 on HIV-1. Contrary to the current model, in which BCA2 lacks antiviral activity in the absence of tetherin, we found that BCA2 possesses tetherin-independent antiviral activity. Here we show that the N-terminus of BCA2 physically interacts with the Matrix region of HIV-1 and other retroviral Gag proteins and promotes their ubiquitination, redistribution to endo-lysosomal compartments and, ultimately, lysosomal degradation. The targeted depletion of BCA2 in tetherin-expressing and tetherin-deficient cells results in a significant increase in virus release and replication, indicating that endogenous BCA2 possesses antiviral activity. Therefore, these results indicate that BCA2 functions as an antiviral factor that targets HIV-1 Gag for degradation, impairing virus assembly and release.  相似文献   
42.
43.
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline.  相似文献   
44.
Mathematical models have come to play a key role in global pandemic preparedness and outbreak response: helping to plan for disease burden, hospital capacity, and inform nonpharmaceutical interventions. Such models have played a pivotal role in the COVID-19 pandemic, with transmission models—and, by consequence, modelers—guiding global, national, and local responses to SARS-CoV-2. However, these models have largely not accounted for the social and structural factors, which lead to socioeconomic, racial, and geographic health disparities. In this piece, we raise and attempt to clarify several questions relating to this important gap in the research and practice of infectious disease modeling: Why do epidemiologic models of emerging infections typically ignore known structural drivers of disparate health outcomes? What have been the consequences of a framework focused primarily on aggregate outcomes on infection equity? What should be done to develop a more holistic approach to modeling-based decision-making during pandemics? In this review, we evaluate potential historical and political explanations for the exclusion of drivers of disparity in infectious disease models for emerging infections, which have often been characterized as “equal opportunity infectors” despite ample evidence to the contrary. We look to examples from other disease systems (HIV, STIs) and successes in including social inequity in models of acute infection transmission as a blueprint for how social connections, environmental, and structural factors can be integrated into a coherent, rigorous, and interpretable modeling framework. We conclude by outlining principles to guide modeling of emerging infections in ways that represent the causes of inequity in infection as central rather than peripheral mechanisms.  相似文献   
45.
46.
Plant Cell, Tissue and Organ Culture (PCTOC) - In vitro plant propagation systems such as temporary immersion bioreactors (TIBs) are valuable tools that enable production of disease-free plants...  相似文献   
47.
48.
49.
We report the draft genome sequence of an ST772 Staphylococcus aureus disease isolate carrying staphylococcal cassette chromosome mec (SCCmec) type V from a pyomyositis patient. Our de novo short read assembly is ∼2.8 Mb and encodes a unique Panton-Valentine leukocidin (PVL) phage with structural genes similar to those of φ7247PVL and novel lysogenic genes at the N termini.  相似文献   
50.
Nitrogen-fixing heterocysts are arranged in a periodic pattern on filaments of the cyanobacterium Anabaena sp. strain PCC 7120 under conditions of limiting combined nitrogen. Patterning requires two inhibitors of heterocyst differentiation, PatS and HetN, which work at different stages of differentiation by laterally suppressing levels of an activator of differentiation, HetR, in cells adjacent to source cells. Here we show that the RGSGR sequence in the 287-amino-acid HetN protein, which is shared by PatS, is critical for patterning. Conservative substitutions in any of the five amino acids lowered the extent to which HetN inhibited differentiation when overproduced and altered the pattern of heterocysts in filaments with an otherwise wild-type genetic background. Conversely, substitution of amino acids comprising the putative catalytic triad of this predicted reductase had no effect on inhibition or patterning. Deletion of putative domains of HetN suggested that the RGSGR motif is the primary component of HetN required for both its inhibitory and patterning activity, and that localization to the cell envelope is not required for patterning of heterocysts. The intercellular signalling proteins PatS and HetN use the same amino acid motif to regulate different stages of heterocyst patterning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号