首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   5篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   11篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
31.
1. Water‐level fluctuations are typical of lakes located in the semi‐arid Mediterranean region, which is characterised by warm rainy winters and hot dry summers. Ongoing climate change may exacerbate fluctuations and lead to more severe episodes of drought, so information on the effects of water level on the functioning of lake ecosystems in such regions is crucial. 2. In eutrophic Lake Eymir, Turkey, we conducted a 4‐month (summer) field experiment using cylindrical 0.8‐m‐ (low‐water‐level) and 1.6‐m‐deep (high‐water‐level) mesocosms (kept open to the sediment and atmosphere). Fish (tench, Tinca tinca, and bleak, Alburnus escherichii) were added to half of the mesocosms, while the rest were kept fishless. Ten shoots of Potamogeton pectinatus were transplanted to each mesocosm. 3. Sampling for physicochemical variables, chlorophyll a (chl‐a), zooplankton and per cent plant volume inhabited (PVI%) by macrophytes was conducted weekly during the first 5 weeks, and subsequently biweekly. Macrophytes were harvested on the last sampling date. During the course of the experiment, the water level decreased by 0.41 ± 0.06 m. 4. Throughout the experiment, fish affected zooplankton abundance (?), nutrient concentrations (+), chl‐a (+) and water clarity (?) most strongly in the low‐water‐level mesocosms and the zooplankton community shifted towards dominance of small‐sized forms. The fishless mesocosms had a higher zooplankton/phytoplankton ratio, suggesting higher grazing. 5. Greatest macrophyte growth was observed in the low‐water‐level fishless mesocosms. However, despite high nutrient concentrations and low water clarity, macrophytes were also abundant in the fish mesocosms and particularly increased following a water‐level decrease from midsummer onwards. Macrophyte growth was poor in the high‐water‐level mesocosms, even in the fishless ones with high water clarity. This was ascribed to extensive periphyton development reducing light availability for the macrophytes. 6. Our results indicate that a reduction in water level during summer may help maintain the growth of macrophytes in Mediterranean eutrophic shallow lakes, despite a strong negative effect of fish predation on water clarity. It is therefore probable that an expected negative effect of global climate change on water clarity because of eutrophication and enhanced top‐down control of fish may be, at least partly, counteracted by reduced water level, provided that physical disturbance is not severe.  相似文献   
32.
A high yield of nifedipine-chitosan microspheres could be obtained using an emulsification phase-separation method. A high level of entrapment of nifedipine in the microspheres was achieved. The microspheres exhibited excellent swelling properties. Differential scanning calorimetry, X-ray diffractometry, and scanning electron microscopy confirmed that at 1.84% loading, nifedipine was dispersed molecularly. The microspheres exhibited faster release at low loadings compared to high loadings. Fitting the data to the coupled Fickian/case II equation, showed that at low loadings polymer relaxation coefficients (k2) were high. As the polymer content increased in the microspheres, the value of n (diffusional exponent characteristic of the release mechanism) approached one, which is indicative of zero order.  相似文献   
33.

Background  

Many anticancer agents have poor water solubility and therefore the development of novel delivery systems for such molecules has received significant attention. Nanocarriers show great potential in delivering therapeutic agents into the targeted organs or cells and have recently emerged as a promising approach to cancer treatments. The aim of this study was to prepare and use poly-2-hydroxyethyl methacrylate (PHEMA) nanoparticles for the controlled release of the anticancer drug doxorubicin.  相似文献   
34.
The objective of this experiment was to determine the effect of dietary grain on calcium homeostasis. Six rumen-fistulated dairy cows with 3 or more previous lactations and no history of parturient paresis were randomly assigned to a sequence of diets in a crossover study with 4 periods of 10 days each. Dietary treatments were: A control ration consisting of wrap grass silage alone (1), the control ration supplemented with ammonium chloride and ammonium sulphate salt solution (2), control ration following a period with supplementation (3) and control ration supplemented with increasing amounts of barley from 4 to 10 kg/cow per day, expected to produce subclinical rumen acidosis (4). Daily intake of the diets was adjusted to 14 kg DM/cow per day. On day 11, the calcium-regulating mechanisms in cows were challenged until recumbency by a standardized intravenous EDTA infusion and cows were left to recover spontaneously. Anion supplementation and the feeding of highly fermentable carbohydrate lowered urine pH below 7.0 due to subclinical acidosis. During spontaneous recovery from EDTA induced hypocalcaemia, the cows more quickly regained a whole blood free calcium concentration of 1.00 mmol/L if they had most recently been supplemented with either anionic salts or with increasing amounts of barley, as compared to the basic ration. It is concluded that so-called slug-feeding or 'steaming up' with highly fermentable carbohydrates before parturition in milk fever susceptible cows enhanced calcium homeostasis similar to the effect seen in cows on anionic diets.  相似文献   
35.
Here we describe the three-dimensional crystal structures of human glucocorticoid receptor ligand-binding domain (GR-LBD) in complex with the antagonist RU-486 at 2.3 A resolution and with the agonist dexamethasone ligand together with a coactivator peptide at 2.8 A. The RU-486 structure was solved in several different crystal forms, two with helix 12 intact (GR1 and GR3) and one with a protease-digested C terminus (GR2). In GR1, part of helix 12 is in a position that covers the co-activator pocket, whereas in the GR3, domain swapping is seen between the crystallographically identical subunits in the GR dimer. An arm consisting of the end of helix 11 and beyond stretches out from one molecule, and helix 12 binds to the other LBD, partly blocking the coactivator pocket of that molecule. This type of GR-LBD dimer has not been described before but might be an artifact from crystallization. Furthermore, the subunits of the GR3 dimers are covalently connected via a disulfide bond between the Cys-736 residues in the two molecules. All three RU-486 GR-LBD structures show that GR has a very flexible region between the end of helix 11 and the end of helix 12.  相似文献   
36.
One immunization with murine polyomavirus (MPyV) VP1 virus-like particles containing a fusion protein between MPyV VP2 and the extra cellular and transmembrane domain of Her2 (Her21–683PyVLPs) efficiently protects BALB/c mice from outgrowth of the Her2 expressing tumor D2F2/E2. To possibly enhance the anti-Her2 immune response and abrogate the induced anti-VLP antibody response, immunization with murine dendritic cells (DCs) loaded with Her21–683PyVLPs was performed. Mice were immunized once or more with 5 or 50 μg Her21–683PyVLPs alone or loaded on DCs, and challenged 14 days after the last immunization with a lethal dose of Her2-positive D2F2/E2 cells. Mice were protected from tumor outgrowth, when immunized only once with 5 or 50 μg Her21–683PyVLPs loaded on DCs, or 50 μg of Her21–683PyVLPs alone, whereas immunization once or more with 5 μg of Her21–683PyVLPs alone only protected half of the mice. Immunization with recombinant Her2 protein alone, or loaded on DCs, did not induce tumor immunity. Using both immunization strategies, Her2-specific T cell immunity was demonstrated, while Her2-specific antibodies were not detected. Loading VLPs on DCs reduced anti-VLP antibodies sixfold, but did not influence the efficiency of subsequent immunizations. Notably, DC maturation by Her21–683PyVLPs in vitro was not demonstrated although the IL-12 production was significantly increased. In conclusion, loading of VLPs on DCs can enhance specific VLP immunization considerably.  相似文献   
37.
OBJECTIVES: Patients with human papillomavirus (HPV)–positive tonsillar squamous cell carcinoma (TSCC) and base of tongue squamous cell carcinoma (BOTSCC) have a better clinical outcome than those with corresponding HPV-negative tumors. Moreover, there is a strong positive correlation between absent/low as opposed to strong HLA class I expression and favorable clinical outcome for HPV-positive tumors, while the reverse applies to HPV-negative tumors. The expression of the antigen processing machinery (APM) components TAP1, TAP2, LMP2, and LMP7 in these tumors in relation to HPV status, HLA class I expression, each other, and clinical outcome was therefore investigated. MATERIAL AND METHODS: Formalin-fixed paraffin-embedded TSCC and BOTSCC, derived from 151 patients and previously analyzed for HPV DNA, HLA class I, and LMP10 expression were stained by immunohistochemistry for TAP1, TAP2, LMP2, and LMP7. RESULTS: Absent/low TAP2, LMP2, and LMP7 expression, similar to HLA class I and LMP10, was common in TSCC and BOTSCC, irrespective of HPV status. Expression of TAP1 and TAP2 was correlated, as was LMP2 to LMP7. LMP2 and LMP7 expression was also associated to HLA class I expression. Moreover, absence of LMP7 was linked to increased disease-free survival in both HPV-positive and HPV-negative cases. CONCLUSION: Reduced expression of TAP2, LMP2, and LMP7 was frequent in TSCC and BOTSCC and their expression as well as that of TAP1 was often interrelated. Furthermore, low LMP7 expression correlated to better clinical outcome and may, together with HPV status, potentially be used for prediction of treatment response.  相似文献   
38.

Background

Emerging whitefly transmitted begomoviruses are major pathogens of vegetable and fibre crops throughout the world, particularly in tropical and sub-tropical regions. Mutation, pseudorecombination and recombination are driving forces for the emergence and evolution of new crop-infecting begomoviruses. Leaf curl disease of field grown radish plants was noticed in Varanasi and Pataudi region of northern India. We have identified and characterized two distinct monopartite begomoviruses and associated beta satellite DNA causing leaf curl disease of radish (Raphanus sativus) in India.

Results

We demonstrate that RaLCD is caused by a complex of two Old World begomoviruses and their associated betasatellites. Radish leaf curl virus-Varanasi is identified as a new recombinant species, Radish leaf curl virus (RaLCV) sharing maximum nucleotide identity of 87.7% with Tomato leaf curl Bangladesh virus-[Bangladesh:2] (Accession number AF188481) while the virus causing radish leaf curl disease-Pataudi is an isolate of Croton yellow vein mosaic virus-[India] (CYVMV-IN) (Accession number AJ507777) sharing 95.8% nucleotide identity. Further, RDP analysis revealed that the RaLCV has a hybrid genome, a putative recombinant between Euphorbia leaf curl virus and Papaya leaf curl virus. Cloned DNA of either RaLCV or CYVMV induced mild leaf curl symptoms in radish plants. However, when these clones (RaLCV or CYVMV) were individually co-inoculated with their associated cloned DNA betasatellite, symptom severity and viral DNA levels were increased in radish plants and induced typical RaLCD symptoms. To further extend these studies, we carried out an investigation of the interaction of these radish-infecting begomoviruses and their associated satellite, with two tomato infecting begomoviruses (Tomato leaf curl Gujarat virus and Tomato leaf curl New Delhi virus). Both of the tomato-infecting begomoviruses showed a contrasting and differential interaction with DNA satellites, not only in the capacity to interact with these molecules but also in the modulation of symptom phenotypes by the satellites.

Conclusion

This is the first report and experimental demonstration of Koch's postulate for begomoviruses associated with radish leaf curl disease. Further observations also provide direct evidence of lateral movement of weed infecting begomovirus in the cultivated crops and the present study also suggests that the exchange of betasatellites with other begomoviruses would create a new disease complex posing a serious threat to crop production.  相似文献   
39.
Upon chronic UV treatment pavement cell expansion in Arabidopsis leaves is reduced, implying alterations in symplastic and apoplastic properties of the epidermal cells. In this study, the effect of UV radiation on microtubule patterning is analysed, as microtubules are thought to serve as guiding rails for the cellulose synthase complexes depositing cellulose microfibrils. Together with hemicelluloses, these microfibrils are regarded as the load-bearing components of the cell wall. Leaves of transgenic plants with fluorescently tagged microtubules (GFP-TUA6) were as responsive to UV as wild type plants. Despite the UV-induced reduction in cell elongation, confocal microscopy revealed that cellular microtubule arrangements were seemingly not affected by the UV treatments. This indicates an unaltered deposition of cellulose microfibrils in the presence of UV radiation. Therefore, we surmise that the reduction in cell expansion in UV-treated leaves is most probably due to changes in cell wall loosening and/or turgor pressure.Key words: arabidopsis, cell expansion, GFP-TUA6, leaf development, microtubule cytoskeleton, UV radiationPhotosynthetic functions such as solar light capture and carbon fixation are highly evolved features of plant leaves. To fulfil these functions in an optimal way, leaf development needs to be tuned to environmental conditions. Leaves are continuously exposed and subjected to environmental influences, which serve as co-regulators of leaf and plant development.1 This ability of plants to adapt, secures the plant''s survival, even under non-optimal conditions. An example of a regulatory environmental parameter is solar light, indispensable for photosynthesis but potentially causing photoinhibition and/or UV-radiation stress. The highly energetic ultraviolet B (UV-B) rays of short wavelengths (280–315 nm) can both cause damage, as well as induce a range of specific metabolic and morphogenic plant responses. It was reported before that exposure to low dose UV radiation reduces Arabidopsis leaf size due to a decreased cell size.2 Expansion of leaf epidermal cells of Arabidopsis thaliana is the combined action of promotion and restriction of growth, resulting in the typical irregular sinuous pavement cells. It has been postulated that cellulose microfibrils are responsible for generating a force opposing isotropic expansion by creating neck regions in between outgrowing lobes.3 As the microtubule cytoskeleton is believed to serve as guiding rails for the cellulose synthase complexes (CESAs),4 the deposition of the cellulose fibrils is intimately linked to the cortical microtubule arrangement. We have studied the UV-effect on microtubule organisation in leaf epidermal cells whose expansion had decreased upon this UV radiation. Microtubules in the adaxial pavement cells of the fourth leaf were monitored on several successive days in a transgenic line containing GFP fused to tubulin A6.5 The chronic UV treatment was started on day 0 when the plants were 2 weeks old, using UV exposure conditions as described in reference 2. First the responsiveness of the GFP-TUA6 plants to UV radiation was evaluated. Similar to wild type (WT) plants,2 the GFP-TUA6 plants had smaller leaves following 8 days of UV treatment (t-test, p < 0.01) (Fig. 1). This was caused by a significant reduction in the generalized cell area average of all measured cells, irrespective of the location within the leaf (Fig. 1; t-test, p < 0.01). In more detail, the average cell area within the base, middle and top zones of the GFP-TUA6 leaf was systematically lower in UV-treated leaves from 8 days after the treatment started onwards (data not shown).Open in a separate windowFigure 1Effect of UV radiation on leaf and cell area after different days of UV radiation. Open asterisks indicate a statistically significant difference in leaf area between UV-treated and control plants, black asterisks indicate statistically significant difference in cell area (t-test, *p < 0.05, **p < 0.01, ***p < 0.001). Error bars indicate the standard error for five different leaves at all measured time-points and 600, 170 and 180 cells at day 0, 8 and 12 respectively.As GFP-TUA6 leaves were as responsive to UV radiation as wild type leaves, confocal microscopy was used to visualize the organisation of the cortical microtubules facing the outer periclinal wall of the adaxial epidermis. No clear difference in microtubule (re)organization could be detected during the development of pavement cells, and throughout the UV treatment period. As shown in Figure 2 at day 2, pavement cells with comparable areas are similarly shaped in control and UV-irradiated plants and contain similar microtubule arrangements (Fig. 2 and marked cells). This means that microtubule organization is not directly affected by the UV exposure and that shape development proceeds in an analoguous manner as under control conditions. This lack of alteration in the microtubule arrangement can be observed for cells at the leaf tip, which were already in the process of lobe formation at the start of the exposure period, as well as for cells at the leaf base. Under our growth conditions, and in the monitored leaf number 4, cell proliferation still took place in this part of the leaf and lobes only started to appear on the cell surface. As microtubules are linked to the deposition of cellulose microfibrils, it can be assumed that no alterations in cellulose deposition occur upon UV treatment either. We can therefore conclude that the process of lobe formation and microtubule patterning is not impeded and that only the extent of cell expansion is restricted upon UV exposure.Open in a separate windowFigure 2Microtubule pattern in control and UV-exposed leaves visualized using GFP-TUA6 and confocal microscopy. Both images are from cells at the mid zone of the fourth leaf at day 2. Microtubules are similarly arranged in equally shaped and sized cells of control and UV-exposed leaves. The marked cells show a pattern whereby the tubules are centred in the neck regions between two outgrowing lobes.According to the Lockhart equation,6 cell (wall) growth is modulated by wall biomechanics and turgor pressure. Concerning turgor pressure, no clear differences in this factor between UV-exposed and control plants of Lactuca sativa L.7 and Pisum sativum8 could be observed, reinforcing the idea that especially the modulation of cell wall properties is the main factor causing the observed UV-induced reduction in cell expansion. Some reports indicate differential expression of wall loosening enzymes like expansins or xyloglucan endotransglycosylase/hydrolases (XTHs),9,10 or cell wall strengthening enzymes as particular peroxidases7 after UV exposure. Another key event could involve UV-mediated changes in the phenylpropanoid pathway, which may cause changes in the lignin biosynthesis. As shown by the literature1114 lignin may well be an important modulator of cell wall architecture in Arabidopsis and therefore alterations in lignin synthesis could form the basis for morphological modifications. Further research on the cell wall properties of UV-treated plants may resolve this uncertainty.As a general conclusion we can state that the patterning of microtubules is not altered, but that alterations in cell wall composition or arrangements are the most plausible candidates for the observed reduction in pavement cell expansion upon chronic UV treatment.  相似文献   
40.

Introduction

Immediate responses towards emotional utterances in humans are determined by the acoustic structure and perceived relevance, i.e. salience, of the stimuli, and are controlled via a central feedback taking into account acoustic pre-experience. The present study explores whether the evaluation of stimulus salience in the acoustic communication of emotions is specifically human or has precursors in mammals. We created different pre-experiences by habituating bats (Megaderma lyra) to stimuli based on aggression, and response, calls from high or low intensity level agonistic interactions, respectively. Then we presented a test stimulus of opposite affect intensity of the same call type. We compared the modulation of response behaviour by affect intensity between the reciprocal experiments.

Results

For aggression call stimuli, the bats responded to the dishabituation stimuli independent of affect intensity, emphasising the attention-grabbing function of this call type. For response call stimuli, the bats responded to a high affect intensity test stimulus after experiencing stimuli of low affect intensity, but transferred habituation to a low affect intensity test stimulus after experiencing stimuli of high affect intensity. This transfer of habituation was not due to over-habituation as the bats responded to a frequency-shifted control stimulus. A direct comparison confirmed the asymmetric response behaviour in the reciprocal experiments.

Conclusions

Thus, the present study provides not only evidence for a discrimination of affect intensity, but also for an evaluation of stimulus salience, suggesting that basic assessment mechanisms involved in the perception of emotion are an ancestral trait in mammals.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号