首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   19篇
  490篇
  2024年   5篇
  2023年   5篇
  2022年   7篇
  2021年   12篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   7篇
  2016年   22篇
  2015年   27篇
  2014年   40篇
  2013年   31篇
  2012年   44篇
  2011年   45篇
  2010年   28篇
  2009年   18篇
  2008年   31篇
  2007年   26篇
  2006年   22篇
  2005年   21篇
  2004年   20篇
  2003年   17篇
  2002年   9篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1966年   1篇
  1964年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有490条查询结果,搜索用时 15 毫秒
121.
A novel and robust scaffold for highly active PPARα agonists based on the 2-mercaptohexanoic acid substructure is presented. Systematic structural variation of the substitution pattern of the phenolic backbone yielded detailed SAR especially of ortho and meta substituents. We corroborated the importance of the sulfur atom as well as of the n-butyl chain for PPARα activity in the 2-mercaptohexanoic acid head group by preparation of carbon analogs and α-unsubstituted derivatives. Compound 10 represents a low nano molar active PPARα activator with excellent selectivity towards PPARγ.  相似文献   
122.
123.
Flatz R  Gerber LR 《PloS one》2010,5(11):e13873
Demographic parameters such as birth and death rates determine the persistence of populations. Understanding the mechanisms that influence these rates is essential to developing effective management strategies. Alloparental behavior, or the care of non-filial young, has been documented in many species and has been shown to influence offspring survival. However, the role of alloparental behavior in maintaining population viability has not been previously studied. Here, we provide the first evidence for adoption in California sea lions and show that adoption potentially works to maintain a high survival rate of young and may ultimately contribute to population persistence. Alloparental behavior should have a positive effect on the population growth rate when the sum of the effects on fitness for the alloparent and beneficiary is positive.  相似文献   
124.
The subcellular localization of proteins is critical to their biological roles. Moreover, whether a protein is membrane-bound, secreted, or intracellular affects the usefulness of, and the strategies for, using a protein as a diagnostic marker or a target for therapy. We employed a rapid and efficient experimental approach to classify thousands of human gene products as either "membrane-associated/secreted" (MS) or "cytosolic/nuclear" (CN). Using subcellular fractionation methods, we separated mRNAs associated with membranes from those associated with the soluble cytosolic fraction and analyzed these two pools by comparative hybridization to DNA microarrays. Analysis of 11 different human cell lines, representing lymphoid, myeloid, breast, ovarian, hepatic, colon, and prostate tissues, identified more than 5,000 previously uncharacterized MS and more than 6,400 putative CN genes at high confidence levels. The experimentally determined localizations correlated well with in silico predictions of signal peptides and transmembrane domains, but also significantly increased the number of human genes that could be cataloged as encoding either MS or CN proteins. Using gene expression data from a variety of primary human malignancies and normal tissues, we rationally identified hundreds of MS gene products that are significantly overexpressed in tumors compared to normal tissues and thus represent candidates for serum diagnostic tests or monoclonal antibody-based therapies. Finally, we used the catalog of CN gene products to generate sets of candidate markers of organ-specific tissue injury. The large-scale annotation of subcellular localization reported here will serve as a reference database and will aid in the rational design of diagnostic tests and molecular therapies for diverse diseases.  相似文献   
125.
126.
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.  相似文献   
127.
We used single-molecule polarization modulation methods to investigate the activation of the plasma membrane Ca(2+)-ATPase (PMCA) by oxidized calmodulin (CaM). Oxidative modification of methionine residues of CaM to their corresponding sulfoxides is known to inhibit the ability of CaM to activate PMCA. Single-molecule polarization methods were used to measure the orientational mobility of fluorescently labeled oxidized CaM bound to PMCA. We previously identified two distinct populations of PMCA-CaM complexes characterized by high and low orientational mobilities, with the low-mobility population appearing at a subsaturating Ca(2+) concentration [Osborn, K. D., et al. (2004) Biophys. J. 87, 1892-1899]. We proposed that the high-mobility population corresponds to PMCA-CaM complexes with a dissociated (and mobile) autoinhibitory domain, whereas the low-mobility population corresponds to PMCA-CaM complexes where the autoinhibitory domain is not dissociated and therefore the enzyme is not active. In the present experiments, performed with PMCA complexed with oxidatively modified CaM at a saturating Ca(2+) concentration, we found a large population of molecules with an orientationally immobile autoinhibitory domain. In contrast, native CaM bound to PMCA was characterized almost entirely by the more orientationally mobile population at a similar Ca(2+) concentration. The addition of 1 mM ATP to complexes of oxidized CaM with PMCA reduced but did not abolish the low-mobility population. These results indicate that the decline in the ability of oxidized CaM to activate PMCA results at least in part from its reduced ability to induce conformational changes in PMCA that result in dissociation of the autoinhibitory domain after CaM binding.  相似文献   
128.
The plasma membrane calcium-ATPase (PMCA) helps to control cytosolic calcium levels by pumping out excess Ca2+. PMCA is regulated by the Ca2+ signaling protein calmodulin (CaM), which stimulates PMCA activity by binding to an autoinhibitory domain of PMCA. We used single-molecule polarization methods to investigate the mechanism of regulation of the PMCA by CaM fluorescently labeled with tetramethylrhodamine. The orientational mobility of PMCA-CaM complexes was determined from the extent of modulation of single-molecule fluorescence upon excitation with a rotating polarization. At a high Ca2+ concentration, the distribution of modulation depths reveals that CaM bound to PMCA is orientationally mobile, as expected for a dissociated autoinhibitory domain of PMCA. In contrast, at a reduced Ca2+ concentration a population of PMCA-CaM complexes appears with significantly reduced orientational mobility. This population can be attributed to PMCA-CaM complexes in which the autoinhibitory domain is not dissociated, and thus the PMCA is inactive. The presence of these complexes demonstrates the inadequacy of a two-state model of Ca2+ pump activation and suggests a regulatory role for the low-mobility state of the complex. When ATP is present, only the high-mobility state is detected, revealing an altered interaction between the autoinhibitory and nucleotide-binding domains.  相似文献   
129.
We report that cytochrome b(5) (cyt b(5)) from Musca domestica (house fly) is more thermally stable than all other microsomal (Mc) cytochromes b(5) that have been examined to date. It also exhibits a much higher barrier to equilibration of the two isomeric forms of the protein, which differ by a 180 degrees rotation about the alpha-gamma-meso axis of hemin (ferric heme). In fact, hemin is kinetically trapped in a nearly statistical 1.2:1 ratio of rotational forms in freshly expressed protein. The equilibrium ratio (5.5:1) is established only upon incubation at temperatures above 37 degrees C. House fly Mc cyt b(5) is only the second b-hemoprotein that has been shown to exhibit kinetically trapped hemin at room temperature or above, the first being cyt b(5) from the outer membrane of rat liver mitochondria (rat OM cyt b(5)). Finally, we show that the small excess of one orientational isomer over the other in freshly expressed protein results from selective binding of hemin by the apoprotein, a phenomenon that has not heretofore been established for any apocyt b(5).  相似文献   
130.
Benzophenanthridine alkaloids are strong antimicrobials of Papaveraceae and attractive lead compounds for drug development. The cytotoxicity of these compounds requires the producing plant to limit the pathogen-triggered burst of biosynthesis. Cells of Eschscholzia californica excrete early benzophenanthridines to the cell wall, followed by re-uptake and reduction in the cytoplasm by the detoxifying enzyme sanguinarine reductase. We now discovered that this enzyme is a core component of self-control in alkaloid production. RNAi-based silencing of sanguinarine reductase gave rise to mutants that either show a complete stop of elicitor-triggered alkaloid production or a burst of biosynthesis that severalfold surpasses the wild type level. These unexpected phenotypes reflect impacts of substrate or product of sanguinarine reductase: the substrate, sanguinarine, inhibits phospholipase A2 at the plasma membrane, an initial component of the signal path towards expression of biosynthetic enzymes. The product, dihydrosanguinarine, inhibits enzymes of early biosynthesis, prior to reticuline formation. By tuning these steady states, sanguinarine reductase adjusts the capacity of alkaloid biosynthesis: a minimum activity is sufficient to prevent the blockade of the induction pathway by sanguinarine, while the full activity of the same enzyme causes a limitation of the biosynthetic flow via dihydrosanguinarine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号