首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   32篇
  493篇
  2024年   2篇
  2023年   4篇
  2022年   7篇
  2021年   12篇
  2020年   6篇
  2019年   8篇
  2018年   13篇
  2017年   7篇
  2016年   21篇
  2015年   27篇
  2014年   40篇
  2013年   31篇
  2012年   44篇
  2011年   46篇
  2010年   29篇
  2009年   18篇
  2008年   31篇
  2007年   26篇
  2006年   23篇
  2005年   23篇
  2004年   21篇
  2003年   17篇
  2002年   9篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1966年   1篇
  1964年   1篇
  1954年   1篇
  1938年   1篇
排序方式: 共有493条查询结果,搜索用时 0 毫秒
1.
The potential for producing acetoin and butanediol with a Bacillus subtilis strain was investigated with continuous culture using molasses as carbon substrate. The steady-state results were influenced by both oxygen and undetermined limiting compounds. Employing the known metabolic pathways, four overall stoichiometry relations were used with an energetic assumption on the energy requirements for biomass formation to establish a linear relations were used with an energetic assumption on the energy requirements for biomass formation to establish a linear relation between the overall rates, whose parameters were determined by linear regression. This provided a relationship for the product formation rate. The chemostat culture data were described with a growth kinetics model, which included limitation by molasses and oxygen as well as diauxic effects and product inhibition. The biokinetics model was combined with an experimentally verified model for the membrane Pervaporation. From this combined model were determined the influence of the membrane characteristics (enrichment factors and membrane area) and the dilution rate on the performance of the integrated process. Simulations revealed that an increase of the enrichment factor, possible by membrane improvement, would have counteracting influences, owing to decreased product inhibition but with lower biomass concentration. (c) 1993 Wiley & Sons, Inc.  相似文献   
2.
Cape ivy (Delairea odorata) is a highly invasive climbing perennial vine that is primarily distributed in coastal communities of California and Oregon, with patchy infestations in some inland riparian areas. In this study, we evaluated light as a potential environmental limitation to the spread of Cape ivy into inland regions of the western United States. Cape ivy was collected from four locations representing the north to south range. Plants were grown for 9 to 11 weeks in full sunlight and under two shade regimes (20 and 6% of full sunlight). The experiment was conducted twice at two temperature regimes. Results show some within- and among-population variability, with the southernmost San Diego County population having the highest biomass under the warmer growing conditions and the three northern populations responding most favorably in the cooler growing conditions. Despite the minor differences within and between populations, Cape ivy grew very poorly in full sunlight in both experiments. Although plants growing under 6% light grew better than those in full sunlight, they were far less robust compared to plants growing at 20% light. Our results indicate that while Cape ivy will not persist in areas with prolonged high intensity sunlight, characterized by much of the interior regions of California and Oregon, it is expected to invade and spread in areas with reduced light, including coastal regions frequently exposed to fog or cloudy conditions, or sub-canopy layers of riparian forests or woodlands. These communities should be the target areas for early detection and rapid response programs to prevent further Cape ivy invasion.  相似文献   
3.
Invasion of Edwardsiella ictaluri into cultured mammalian, fish and enzymatically harvested catfish enteric epithelial cells is described. Gentamicin survival assays were used to demonstrate the ability of this catfish pathogen to invade IEC-6 (origin: rat small intestinal epithelium), Henle 407 (origin: human embryonic intestinal epithelium), fathead minnow (FHM, minnow epithelial cells) and trypsin/pepsin-harvested channel catfish enteric epithelial cells. Invasion of all cell types occurred within 2 h of contact at 26 degrees C, in contrast to Escherichia coli DH5 alpha, which did not invade cells tested. Eight Edwardsiella ictaluri isolates from diseased catfish and the ATCC (American Type Culture Collection) strain were evaluated for invasion efficiency using FHM cells. All isolates were invasive, but at differing efficiencies. Invasion blocking assays using chemical blocking agents were performed on a single isolate (LA 89-9) using IEC-6 epithelial cells. Preincubation of IEC-6 cells with cytochalasin D (microfilament depolymerizer) and monodansylcadaverine (blocks receptor-mediated endocytosis) significantly reduced invasion by E. ictaluri, whereas exposure to colchicine (microtubule depolymerizer) had no effect on bacterial internalization. Results indicate that actin polymerization and receptor-mediated endocytosis are involved in uptake of E. ictaluri by IEC-6 epithelial cells. Invasion trials using freshly harvested cells from the intestine of the natural host, Ictalurus punctatus, show that invasion occurs, but at a low efficiency. This is possibly due to loss of outer membrane receptors during enzymatic cell harvest. This study provides the first documentation of the invasion of cultured mammalian and fish cells by E. ictaluri, and identifies possible mechanisms used for intracellular access. Additionally, the study describes several functional in vitro invasion models using commercially available cell lines as well as cells from the natural host (channel catfish, I. punctatus).  相似文献   
4.

Background

The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days).

Results

Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism.

Conclusions

Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-758) contains supplementary material, which is available to authorized users.  相似文献   
5.
A noticeable increase in mean temperature has already been observed in Switzerland and summer temperatures up to 4.8 K warmer are expected by 2090. This article reviews the observed impacts of climate change on biodiversity and considers some perspectives for the future at the national level.The following impacts are already evident for all considered taxonomic groups: elevation shifts of distribution towards mountain summits, spread of thermophilous species, colonisation by new species from warmer areas and phenological shifts. Additionally, in the driest areas, increasing droughts are affecting tree survival and fish species are suffering from warm temperatures in lowland regions. These observations are coherent with model projections, and future changes will probably follow the current trends.These changes will likely cause extinctions for alpine species (competition, loss of habitat) and lowland species (temperature or drought stress). In the very urbanised Swiss landscape, the high fragmentation of the natural ecosystems will hinder the dispersal of many species towards mountains. Moreover, disruptions in species interactions caused by individual migration rates or phenological shifts are likely to have consequences for biodiversity. Conversely, the inertia of the ecosystems (species longevity, restricted dispersal) and the local persistence of populations will probably result in lower extinction rates than expected with some models, at least in 21st century. It is thus very difficult to estimate the impact of climate change in terms of species extinctions. A greater recognition by society of the intrinsic value of biodiversity and of its importance for our existence will be essential to put in place effective mitigation measures and to safeguard a maximum number of native species.  相似文献   
6.
Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) is a light-activated cation channel, which is a promising optogenetic tool. We show by resonance Raman spectroscopy and retinal extraction followed by high pressure liquid chromatography (HPLC) that the isomeric ratio of all-trans to 13-cis of solubilized channelrhodopsin-1 is with 70:30 identical to channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Critical frequency shifts in the retinal vibrations are identified in the Raman spectrum upon transition to the open (conductive P2380) state. Fourier transform infrared spectroscopy (FTIR) spectra indicate different structures of the open states in the two channelrhodopsins as reflected by the amide I bands and the protonation pattern of acidic amino acids.  相似文献   
7.
Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.  相似文献   
8.
9.

Background

Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics.

Objective

To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way.

Approach & Results

Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level.

Conclusions

The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.  相似文献   
10.
A previous study allowed the identification of two QTL regions at positions 11–34 cM (QTL1) and 68–76 cM (QTL2) on porcine chromosome SSC12 affecting several backfat fatty acids in an Iberian x Landrace F2 intercross. In the current study, different approaches were performed in order to better delimit the quoted QTL regions and analyze candidate genes. A new chromosome scan, using 81 SNPs selected from the Porcine 60KBeadChip and six previously genotyped microsatellites have refined the QTL positions. Three new functional candidate genes (ACOX1, ACLY, and SREBF1) have been characterized. Moreover, two putative promoters of porcine ACACA gene have also been investigated. New isoforms and 24 SNPs were detected in the four candidate genes, 19 of which were genotyped in the population. ACOX1 and ACLY SNPs failed to explain the effects of QTL1 on palmitic and gadoleic fatty acids. QTL2, affecting palmitoleic, stearic, and vaccenic fatty acids, maps close to the ACACA gene location. The most significant associations have been detected between one intronic (g.53840T > C) and one synonymous (c.5634T > C) ACACA SNPs and these fatty acids. Complementary analyses including ACACA gene expression quantification and association studies in other porcine genetic types do not support the expected causal effect of ACACA SNPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号