首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1411篇
  免费   133篇
  2023年   6篇
  2022年   19篇
  2021年   33篇
  2020年   17篇
  2019年   20篇
  2018年   33篇
  2017年   16篇
  2016年   44篇
  2015年   55篇
  2014年   64篇
  2013年   103篇
  2012年   111篇
  2011年   95篇
  2010年   64篇
  2009年   45篇
  2008年   107篇
  2007年   82篇
  2006年   79篇
  2005年   70篇
  2004年   58篇
  2003年   53篇
  2002年   58篇
  2001年   20篇
  2000年   24篇
  1999年   18篇
  1998年   20篇
  1997年   7篇
  1996年   5篇
  1995年   11篇
  1994年   19篇
  1993年   13篇
  1992年   13篇
  1991年   15篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1983年   13篇
  1981年   9篇
  1980年   11篇
  1978年   5篇
  1977年   7篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1972年   6篇
  1967年   6篇
排序方式: 共有1544条查询结果,搜索用时 15 毫秒
991.
Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2UC) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning.  相似文献   
992.
Plant and Soil - Seed germination is one of the most important processes in plant biology and ecology because it determines the timing and magnitude of seedling emergence events every growing...  相似文献   
993.
The new release of the All-Species Living Tree Project (LTP) represents an important step forward in the reconstruction of 16S rRNA gene phylogenies, since we not only provide an updated set of type strain sequences until December 2020, but also a series of improvements that increase the quality of the database. An improved universal alignment has been introduced that is implemented in the ARB format. In addition, all low-quality sequences present in the previous releases have been substituted by new entries with higher quality, many of them as a result of whole genome sequencing. Altogether, the improvements in the dataset and 16S rRNA sequence alignment allowed us to reconstruct robust phylogenies. The trees made available through this current LTP release feature the best topologies currently achievable. The given nomenclature and taxonomic hierarchy reflect all the changes available up to December 2020. The aim is to regularly update the validly published nomenclatural classification changes and new taxa proposals. The new release can be found at the following URL: https://imedea.uib-csic.es/mmg/ltp/.  相似文献   
994.
995.
Associations between cocoa consumption in humans, excreted metabolites and total antioxidant capacity (TAC) have been scarcely investigated. The aims of the study were to investigate the epicatechin (( - )-Ec) metabolites excreted in urine samples after an intake of 40 g of cocoa powder along with the TAC of these urine samples and the relation between both the analyses. Each of the 21 volunteers received two interventions, one with a polyphenol-rich food (PRF) and one with a polyphenol-free food (PFF) in a randomized cross-over study. Urine samples were taken before and during 24 h at 0-6, 6-12 and 12-24 h periods after test intake. The excreted ( - )-Ec metabolites and the TAC were determined in urine samples by LC-MS/MS and TEAC assay, respectively. The maximum excretion of ( - )-Ec metabolites and the maximum TAC value were observed in urine samples excreted between 6 and 12 h after PRF consumption. Significance of TAC increase was found in urine samples excreted during 0-6 and 6-12 h (66.6 and 72.67%, respectively, with respect to the 0 h).  相似文献   
996.
Trehalose metabolism, a short side-branch of primary carbon metabolism that is controlled by a surprisingly large gene family, is emerging as an important new regulatory pathway in plants. Two recent studies by Namiko Satoh-Nagasawa et al. and Leonardo Gomez et al. have highlighted its novel and possibly pivotal role in coordinating carbon supply with plant growth and development.  相似文献   
997.
Telonemia has recently been described as a new eukaryotic phylum with uncertain evolutionary origin. So far, only two Telonemia species, Telonema subtilis and Telonema antarcticum, have been described, but there are substantial variations in size and morphology among Telonema isolates and field observations, indicating a hidden diversity of Telonemia-like species and populations. In this study, we investigated the diversity and the global distribution of this group by analyzing 18S rDNA sequences from marine environmental clone libraries published in GenBank as well as several unpublished sequences from the Indian Ocean. Phylogenetic analyses of the identified sequences suggest that the Telonemia phylum includes several undescribed 18S rDNA phylotypes, probably corresponding to a number of different species and/or populations. The Telonemia phylotypes form two main groups, here referred to as Telonemia Groups 1 and 2. Some of the closely related sequences originate from separate oceans, indicating worldwide distributions of various Telonemia phylotypes, while other phylotypes seem to have limited geographical distribution. Further investigations of the evolutionary relationships within Telonemia should be conducted on isolated cultures of Telonema-like strains using multi-locus sequencing and morphological data.  相似文献   
998.

Background  

Mycobacterium avium subsp. paratuberculosis (Map) causes paratuberculosis in animals and is suspected of causing Crohn's Disease in humans. Characterization of strains led to classify paratuberculosis isolates in two main types, cattle type strains, found affecting all host species, and sheep type strains, reported affecting mainly sheep. In order to get a better understanding of the epidemiology of paratuberculosis a large set of Map isolates obtained from different species over the last 25 years have been characterized. Five-hundred and twenty isolates from different hosts (cattle, sheep, goats, bison, deer and wild boar) and origins had been cultured and typed by IS1311 restriction-endonuclease-analysis. Two-hundred and sixty-nine isolates were further characterized by pulsed-field gel electrophoresis (PFGE) using SnaBI and SpeI endonucleases. Differences in strain isolation upon various media conditions were also studied.  相似文献   
999.
Like other viruses, productive hepatitis C virus (HCV) infection depends on certain critical host factors. We have recently shown that an interaction between HCV nonstructural protein NS5A and a host protein, TBC1D20, is necessary for efficient HCV replication. TBC1D20 contains a TBC (Tre-2, Bub2, and Cdc16) domain present in most known Rab GTPase-activating proteins (GAPs). The latter are master regulators of vesicular membrane transport, as they control the activity of membrane-associated Rab proteins. To better understand the role of the NS5A-TBC1D20 interaction in the HCV life cycle, we used a biochemical screen to identify the TBC1D20 Rab substrate. TBC1D20 was found to be the first known GAP for Rab1, which is implicated in the regulation of anterograde traffic between the endoplasmic reticulum and the Golgi complex. Mutation of amino acids implicated in Rab GTPase activation by other TBC domain-containing GAPs abrogated the ability of TBC1D20 to activate Rab1 GTPase. Overexpression of TBC1D20 blocked the transport of exogenous vesicular stomatitis virus G protein from the endoplasmic reticulum, validating the involvement of TBC1D20 in this pathway. Rab1 depletion significantly decreased HCV RNA levels, suggesting a role for Rab1 in HCV replication. These results highlight a novel mechanism by which viruses can hijack host cell machinery and suggest an attractive model whereby the NS5A-TBC1D20 interaction may promote viral membrane-associated RNA replication.  相似文献   
1000.
The movement of ions across cell membranes is essential for a wide variety of fundamental physiological processes, including secretion, muscle contraction, and neuronal excitation. This movement is possible because of the presence in the cell membrane of a class of integral membrane proteins dubbed ion channels. Ion channels, thanks to the presence of aqueous pores in their structure, catalyze the passage of ions across the otherwise ion-impermeable lipid bilayer. Ion conduction across ion channels is highly regulated, and in the case of voltage-dependent K(+) channels, the molecular foundations of the voltage-dependent conformational changes leading to the their open (conducting) configuration have provided most of the driving force for research in ion channel biophysics since the pioneering work of Hodgkin and Huxley (Hodgkin, A. L., and Huxley, A. F. (1952) J. Physiol. 117, 500-544). The voltage-dependent K(+) channels are the prototypical voltage-gated channels and govern the resting membrane potential. They are responsible for returning the membrane potential to its resting state at the termination of each action potential in excitable membranes. The pore-forming subunits (alpha) of many voltage-dependent K(+) channels and modulatory beta-subunits exist in the membrane as one component of macromolecular complexes, able to integrate a myriad of cellular signals that regulate ion channel behavior. In this review, we have focused on the modulatory effects of beta-subunits on the voltage-dependent K(+) (Kv) channel and on the large conductance Ca(2+)- and voltage-dependent (BK(Ca)) channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号