首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1393篇
  免费   136篇
  2023年   6篇
  2022年   14篇
  2021年   33篇
  2020年   16篇
  2019年   19篇
  2018年   33篇
  2017年   15篇
  2016年   40篇
  2015年   57篇
  2014年   63篇
  2013年   102篇
  2012年   109篇
  2011年   96篇
  2010年   63篇
  2009年   43篇
  2008年   105篇
  2007年   80篇
  2006年   80篇
  2005年   65篇
  2004年   59篇
  2003年   52篇
  2002年   59篇
  2001年   22篇
  2000年   26篇
  1999年   17篇
  1998年   22篇
  1997年   8篇
  1996年   5篇
  1995年   11篇
  1994年   21篇
  1993年   13篇
  1992年   13篇
  1991年   15篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1983年   13篇
  1981年   9篇
  1980年   11篇
  1978年   5篇
  1977年   7篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1972年   6篇
  1967年   6篇
排序方式: 共有1529条查询结果,搜索用时 140 毫秒
111.
Molecular recognition begins when two molecules approach and establish interactions of certain strength. The mechanisms of molecular recognition reactions between biological molecules are not well known, and few systems have been analyzed in detail. We investigate here the reaction between an apoprotein and its physiological cofactor (apoflavodoxin and flavin mononucleotide) that binds reversibly to form a non-covalent complex (flavodoxin) involved in electron transfer reactions. We have analyzed the fast binding reactions between the FMN cofactor (and shorter analogs) and wild type (and nine mutant apoflavodoxins where residues interacting with FMN in the final complex have been replaced). The x-ray structures of two such mutants are reported that show the mutations are well tolerated by the protein. From the calculated microscopic binding rate constants we have performed a Phi analysis of the transition state of complex formation that indicates that the binding starts by interaction of the isoalloxazine-fused rings in FMN with residues of its hydrophobic binding site. In contrast, the phosphate in FMN, known to contribute most to the affinity of the final holoflavodoxin complex, is not bound in the transition state complex. Both the effects of ionic strength and of phosphate concentration on the wild type complex rate constant agree with this scenario. As suggested previously by nmr data, it seems that the isoalloxazine-binding site may be substantially open in solution. Interestingly, although FMN is a charged molecule, electrostatic interactions seem not to play a role in directing the binding, unlike what has been reported for other biological complexes. The binding can thus be best described as a hydrophobic encounter at an open binding site.  相似文献   
112.
Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G(*)(omega)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1-100 Hz) and at different loading forces (0.1-0.9 nN) with atomic force microscopy. G(*)(omega) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G'(omega) increased with frequency following a power law with exponent approximately 0.2. The loss modulus G"(omega) was approximately 2/3 lower and increased similarly to G'(omega) up to approximately 10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G'(omega) and G"(omega). G(*)(omega) conformed to the power-law model with a structural damping coefficient of approximately 0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture.  相似文献   
113.
The synthesis of human superoxide dismutase (SOD) in batch cultures of a Saccharomyces cerevisiae strain using a glucose-limited minimal medium was studied through metabolic flux analysis. A stoichiometric model was built, which included 78 reactions, according to metabolic pathways operative in these strains during respirofermentative and oxidative metabolism. It allowed calculation of the distribution of metabolic fluxes during diauxic growth on glucose and ethanol. Fermentation profiles and metabolic fluxes were analyzed at different phases of diauxic growth for the recombinant strain (P+) and for its wild type (P-). The synthesis of SOD by the strain P+ resulted in a decrease in specific growth rate of 34 and 54% (growth on glucose and ethanol respectively) in comparison to the wild type. Both strains exhibited similar flux of glucose consumption and ethanol synthesis but important differences in carbon distribution with biomass/substrate yields and ATP production 50% higher in P-. A higher contribution of fermentative metabolism, with 64% of the energy produced at the phosphorylation level, was observed during SOD production. The flux of precursors to amino acids and nucleotides was higher in the recombinant strain, in agreement with the higher total RNA and protein levels. Lower specific growth rates in strain P+ appear to be related to the decrease in the rate of synthesis of nonrecombinant protein, as well as a decrease in the activities of the pentose phosphate (PP) pathway and TCA cycle. A very different way of entry into the stationary phase was observed for each strain: in the wild-type strain most metabolic fluxes decreased and fluxes related to energy reserve synthesis increased, while in the P+ strain the flux of 22 reactions (including PP pathway and amino acids biosynthesis) related to SOD production increased their fluxes. Changes in SOD production rates at different physiological states appear to be related to the differences in building blocks availability between respirofermentative and oxidative metabolism. Using the present expression system, ideal conditions for SOD synthesis are represented by either active growth during respirofermentative metabolism or transition from a growing to a nongrowing state. An increase in SOD flux could be achieved using an expression system nonassociated to growth and potentially eliminating part of the metabolic burden.  相似文献   
114.
The mating pattern and female fertility on the two main mitochondrial DNA haplotypes (I and II) of Drosophila subobscura were studied, in an attempt to find possible differences between them in relation to sexual selection or isolation that could explain the populational dynamics and the co-existence of these two strains in nature. The mating pattern indicated an assortative mating in population cages, where couples of the same haplotype, mainly those of haplotype I, mated more often. However, the significations detected in laboratory conditions disappeared in wild populations, where random mating was the rule. The female fertility also showed differences in the laboratory compared to the wild, since couples with haplotype I males were more efficient in the laboratory populations. These results, together with others that we previously obtained, either point to selection acting directly on the mtDNA or to the presence of some kind of cytonuclear co-adaptation in these two haplotypes, although this must be modulated by other factors that change with the seasons and time. The end result could well be a balance of opposite forces acting on both haplotypes.  相似文献   
115.
Lou XY  Casella G  Littell RC  Yang MC  Johnson JA  Wu R 《Genetics》2003,163(4):1533-1548
For tightly linked loci, cosegregation may lead to nonrandom associations between alleles in a population. Because of its evolutionary relationship with linkage, this phenomenon is called linkage disequilibrium. Today, linkage disequilibrium-based mapping has become a major focus of recent genome research into mapping complex traits. In this article, we present a new statistical method for mapping quantitative trait loci (QTL) of additive, dominant, and epistatic effects in equilibrium natural populations. Our method is based on haplotype analysis of multilocus linkage disequilibrium and exhibits two significant advantages over current disequilibrium mapping methods. First, we have derived closed-form solutions for estimating the marker-QTL haplotype frequencies within the maximum-likelihood framework implemented by the EM algorithm. The allele frequencies of putative QTL and their linkage disequilibria with the markers are estimated by solving a system of regular equations. This procedure has significantly improved the computational efficiency and the precision of parameter estimation. Second, our method can detect marker-QTL disequilibria of different orders and QTL epistatic interactions of various kinds on the basis of a multilocus analysis. This can not only enhance the precision of parameter estimation, but also make it possible to perform whole-genome association studies. We carried out extensive simulation studies to examine the robustness and statistical performance of our method. The application of the new method was validated using a case study from humans, in which we successfully detected significant QTL affecting human body heights. Finally, we discuss the implications of our method for genome projects and its extension to a broader circumstance. The computer program for the method proposed in this article is available at the webpage http://www.ifasstat.ufl.edu/genome/~LD.  相似文献   
116.
Zinc is present at high concentrations in the photoreceptor cells of the retina where it has been proposed to play a role in the visual phototransduction process. In order to obtain more information about this role, the study of the effect of zinc on several properties of the visual photoreceptor rhodopsin has been investigated. A specific effect of Zn(2+) on the thermal stability of rhodopsin, obtained from bovine retinas and solubilized in dodecyl maltoside detergent, in the dark is reported. The thermal stability of rhodopsin in its ground state (dark state) is clearly reduced with increasing Zn(2+) concentrations (0-50 microm Zn(2+)). The thermal bleaching process is accelerated in the presence of Zn(2+) with k rate constants, at 55 degrees C, of 0.028 +/- 0.002 min(-1) (0 microm Zn(2+)) and 0.056 +/- 0.003 min(-1) (50 microm Zn(2+)), corresponding to t(12) values of 24.4 +/- 1.6 min and 11.8 +/- 0.1 min, respectively. Thermodynamic parameters derived from Arrhenius plots show a significant E(a) increase at 50 microm Zn(2+) for the process, with deltaG++ decrease and increase in deltaH++ and deltaS++ possibly reflecting conformational rearrangements and reordering of water molecules. The stability of the metarhodopsin II intermediate is also decreased and changes in the metarhodopsin II decay pathway are also detected. The extent of rhodopsin regeneration in vitro is also reduced by zinc. These effects, specific for zinc, are also seen for rhodopsin in native disc membranes, and may be relevant to the suggested role of Zn(2+) in normal and pathological retinal function.  相似文献   
117.
The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surface most samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 micromol of photons m(-2) x s(-1) evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles.  相似文献   
118.
Muscle wasting accompanies diseases that are associated with chronic elevated levels of circulating inflammatory cytokines and oxidative stress. We previously demonstrated that tumor necrosis factor-alpha (TNF-alpha) inhibits myogenic differentiation via the activation of nuclear factor-kappaB (NF-kappaB). The goal of the present study was to determine whether this process depends on the induction of oxidative stress. We demonstrate here that TNF-alpha causes a decrease in reduced glutathione (GSH) during myogenic differentiation of C(2)C(12) cells, which coincides with an elevated generation of reactive oxygen species. Supplementation of cellular GSH with N-acetyl-l-cysteine (NAC) did not reverse the inhibitory effects of TNF-alpha on troponin I promoter activation and only partially restored creatine kinase activity in TNF-alpha-treated cells. In contrast, the administration of NAC before treatment with TNF-alpha almost completely restored the formation of multinucleated myotubes. NAC decreased TNF-alpha-induced activation of NF-kappaB only marginally, indicating that the redox-sensitive component of the inhibition of myogenic differentiation by TNF-alpha occurred independently, or downstream of NF-kappaB. Our observations suggest that the inhibitory effects of TNF-alpha on myogenesis can be uncoupled in a redox-sensitive component affecting myotube formation and a redox independent component affecting myogenic protein expression.  相似文献   
119.
Paratuberculosis in free-ranging fallow deer in Spain   总被引:1,自引:0,他引:1  
Paratuberculosis was diagnosed in a population of approximately 1,000 free-ranging fallow deer (Dama dama) sampled from 1997-98 in the Regional Hunting Reserve of El Sueve (Asturias, Spain). Five of eight animals observed with diarrhea were diagnosed as having paratuberculosis on the basis of gross lesions at postmortem examination and histopathology. In two deer, Mycobacterium avium subsp. paratuberculosis was cultured and identified by polymerase chain reaction. Indirect enzyme-linked immunosorbent assay and immunodiffusion tests were used to evaluate sera from 33 adult deer from this population. All fallow deer tested were seronegative.  相似文献   
120.
The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between HhaI methyltransferase (M.HhaI) and oligodeoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.HhaI. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.HhaI that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.HhaI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号