首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1381篇
  免费   131篇
  2023年   6篇
  2022年   19篇
  2021年   33篇
  2020年   16篇
  2019年   19篇
  2018年   32篇
  2017年   15篇
  2016年   40篇
  2015年   55篇
  2014年   63篇
  2013年   102篇
  2012年   108篇
  2011年   95篇
  2010年   63篇
  2009年   43篇
  2008年   104篇
  2007年   80篇
  2006年   77篇
  2005年   65篇
  2004年   58篇
  2003年   52篇
  2002年   58篇
  2001年   19篇
  2000年   23篇
  1999年   17篇
  1998年   20篇
  1997年   7篇
  1996年   5篇
  1995年   11篇
  1994年   19篇
  1993年   13篇
  1992年   13篇
  1991年   15篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1983年   13篇
  1981年   9篇
  1980年   11篇
  1978年   5篇
  1977年   7篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1972年   6篇
  1967年   6篇
排序方式: 共有1512条查询结果,搜索用时 78 毫秒
81.
Currently, there are no effective therapies to ameliorate the pathological progression of Alzheimer's disease (AD). Evidence suggests that environmental factors may contribute to AD. Notably, dietary nutrients are suggested to play a key role in mediating mechanisms associated with brain function. Choline is a B‐like vitamin nutrient found in common foods that is important in various cell functions. It serves as a methyl donor and as a precursor for production of cell membranes. Choline is also the precursor for acetylcholine, a neurotransmitter which activates the alpha7 nicotinic acetylcholine receptor (α7nAchR), and also acts as an agonist for the Sigma‐1 R (σ1R). These receptors regulate CNS immune response, and their dysregulation contributes to AD pathogenesis. Here, we tested whether dietary choline supplementation throughout life reduces AD‐like pathology and rescues memory deficits in the APP/PS1 mouse model of AD. We exposed female APP/PS1 and NonTg mice to either a control choline (1.1 g/kg choline chloride) or a choline‐supplemented diet (5.0 g/kg choline chloride) from 2.5 to 10 months of age. Mice were tested in the Morris water maze to assess spatial memory followed by neuropathological evaluation. Lifelong choline supplementation significantly reduced amyloid‐β plaque load and improved spatial memory in APP/PS1 mice. Mechanistically, these changes were linked to a decrease of the amyloidogenic processing of APP, reductions in disease‐associated microglial activation, and a downregulation of the α7nAch and σ1 receptors. Our results demonstrate that lifelong choline supplementation produces profound benefits and suggest that simply modifying diet throughout life may reduce AD pathology.  相似文献   
82.
83.
How much temporal recurrence is present in microbial assemblages is still an unanswered ecological question. Even though marked seasonal changes have been reported for whole microbial communities, less is known on the dynamics and seasonality of individual taxa. Here, we aim at understanding microbial recurrence at three different levels: community, taxonomic group and operational taxonomic units (OTUs). For that, we focused on a model microbial eukaryotic community populating a long‐term marine microbial observatory using 18S rRNA gene data from two organismal size fractions: the picoplankton (0.2–3 µm) and the nanoplankton (3–20 µm). We have developed an index to quantify recurrence in particular taxa. We found that community structure oscillated systematically between two main configurations corresponding to winter and summer over the 10 years studied. A few taxonomic groups such as Mamiellophyceae or MALV‐III presented clear recurrence (i.e., seasonality), whereas 13%–19% of the OTUs in both size fractions, accounting for ~40% of the relative abundance, featured recurrent dynamics. Altogether, our work links long‐term whole community dynamics with that of individual OTUs and taxonomic groups, indicating that recurrent and non‐recurrent changes characterize the dynamics of microbial assemblages.  相似文献   
84.
85.
86.
Most microorganisms can metabolize glycerol when external electron acceptors are available (i.e. under respiratory conditions). However, few can do so under fermentative conditions owing to the unique redox constraints imposed by the high degree of reduction of glycerol. Here, we utilize in silico analysis combined with in vivo genetic and biochemical approaches to investigate the fermentative metabolism of glycerol in Escherichia coli. We found that E. coli can achieve redox balance at alkaline pH by reducing protons to H2, complementing the previously reported role of 1,2-propanediol synthesis under acidic conditions. In this new redox balancing mode, H2 evolution is coupled to a respiratory glycerol dissimilation pathway composed of glycerol kinase (GK) and glycerol-3-phosphate (G3P) dehydrogenase (G3PDH). GK activates glycerol to G3P, which is further oxidized by G3PDH to generate reduced quinones that drive hydrogenase-dependent H2 evolution. Despite the importance of the GK-G3PDH route under alkaline conditions, we found that the NADH-generating glycerol dissimilation pathway via glycerol dehydrogenase (GldA) and phosphoenolpyruvate (PEP)-dependent dihydroxyacetone kinase (DHAK) was essential under both alkaline and acidic conditions. We assessed system-wide metabolic impacts of the constraints imposed by the PEP dependency of the GldA-DHAK route. This included the identification of enzymes and pathways that were not previously known to be involved in glycerol metabolisms such as PEP carboxykinase, PEP synthetase, multiple fructose-1,6-bisphosphatases and the fructose phosphate bypass.  相似文献   
87.
Thermal performance of quartz capillaries for vitrification   总被引:1,自引:1,他引:0  
Risco R  Elmoazzen H  Doughty M  He X  Toner M 《Cryobiology》2007,55(3):222-229
In this paper we report the thermal behavior of a new approach for vitrification. Thermal performance of traditional open pulled straws is compared with a new technique based on the combined use of quartz capillaries with slush nitrogen. This new method of vitrification achieved ultrafast cooling rates of 250,000 °C/min. As a result, a much lower concentration of cryoprotectant was needed to reach vitrification. In fact, a cryoprotectant solution typically used in oocyte slow freezing protocols was shown to remain transparent after cooling to liquid nitrogen temperatures indicating apparent “vitrification”. This approach offers a new and very promising technique for vitrification of cells using low levels of cryoprotectants.  相似文献   
88.
Glucosamine-6-phosphate N-acetyltransferase (GNA1) catalyses the N-acetylation of d-glucosamine-6-phosphate (GlcN-6P), using acetyl-CoA as an acetyl donor. The product GlcNAc-6P is an intermediate in the biosynthesis UDP-GlcNAc. GNA1 is part of the GCN5-related acetyl transferase family (GNATs), which employ a wide range of acceptor substrates. GNA1 has been genetically validated as an antifungal drug target. Detailed knowledge of the Michaelis complex and trajectory towards the transition state would facilitate rational design of inhibitors of GNA1 and other GNAT enzymes. Using the pseudo-substrate glucose-6-phosphate (Glc-6P) as a probe with GNA1 crystals, we have trapped the first GNAT (pseudo-)Michaelis complex, providing direct evidence for the nucleophilic attack of the substrate amine, and giving insight into the protonation of the thiolate leaving group.  相似文献   
89.
Gene regulatory networks have been conserved during evolution. The Drosophila wing and the vertebrate hindbrain share the gene network involved in the establishment of the boundary between dorsal and ventral compartments in the wing and adjacent rhombomeres in the hindbrain. A positive feedback-loop between boundary and non-boundary cells and mediated by the activities of Notch and Wingless/Wnt-1 leads to the establishment of a Notch dependent organizer at the boundary. By means of a Systems Biology approach that combines mathematical modeling and both in silico and in vivo experiments in the Drosophila wing primordium, we modeled and tested this regulatory network and present evidence that a novel property, namely refractoriness to the Wingless signaling molecule, is required in boundary cells for the formation of a stable dorsal-ventral boundary. This new property has been validated in vivo, promotes mutually exclusive domains of Notch and Wingless activities and confers stability to the dorsal-ventral boundary. A robustness analysis of the regulatory network complements our results and ensures its biological plausibility.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号