首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   32篇
  2024年   1篇
  2022年   1篇
  2021年   7篇
  2019年   1篇
  2017年   1篇
  2016年   6篇
  2015年   16篇
  2014年   14篇
  2013年   21篇
  2012年   31篇
  2011年   27篇
  2010年   21篇
  2009年   25篇
  2008年   36篇
  2007年   26篇
  2006年   29篇
  2005年   32篇
  2004年   25篇
  2003年   27篇
  2002年   32篇
  2001年   5篇
  2000年   7篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   5篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1978年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
  1960年   1篇
  1936年   1篇
排序方式: 共有507条查询结果,搜索用时 328 毫秒
101.
102.
Empedopeptin is a natural lipodepsipeptide antibiotic with potent antibacterial activity against multiresistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae in vitro and in animal models of bacterial infection. Here, we describe its so far elusive mechanism of antibacterial action. Empedopeptin selectively interferes with late stages of cell wall biosynthesis in intact bacterial cells as demonstrated by inhibition of N-acetylglucosamine incorporation into polymeric cell wall and the accumulation of the ultimate soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide in the cytoplasm. Using membrane preparations and the complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes and their respective purified substrates, we show that empedopeptin forms complexes with undecaprenyl pyrophosphate containing peptidoglycan precursors. The primary physiological target of empedopeptin is undecaprenyl pyrophosphate-N-acetylmuramic acid(pentapeptide)-N-acetylglucosamine (lipid II), which is readily accessible at the outside of the cell and which forms a complex with the antibiotic in a 1:2 molar stoichiometry. Lipid II is bound in a region that involves at least the pyrophosphate group, the first sugar, and the proximal parts of stem peptide and undecaprenyl chain. Undecaprenyl pyrophosphate and also teichoic acid precursors are bound with lower affinity and constitute additional targets. Calcium ions are crucial for the antibacterial activity of empedopeptin as they promote stronger interaction with its targets and with negatively charged phospholipids in the membrane. Based on the high structural similarity of empedopeptin to the tripropeptins and plusbacins, we propose this mechanism of action for the whole compound class.  相似文献   
103.
Thrombocytopenia inhibits tumor growth and especially metastasis in mice, whereas additional depletion of NK cells reverts this antimetastatic phenotype. It has therefore been speculated that platelets may protect hematogenously disseminating tumor cells from NK-dependent antitumor immunity. Tumor cells do not travel through the blood alone, but are rapidly coated by platelets, and this phenomenon has been proposed to shield disseminating tumor cells from NK-mediated lysis. However, the underlying mechanisms remain largely unclear. In this study, we show that megakaryocytes acquire expression of the TNF family member glucocorticoid-induced TNF-related ligand (GITRL) during differentiation, resulting in GITRL expression by platelets. Upon platelet activation, GITRL is upregulated on the platelet surface in parallel with the α-granular activation marker P-selectin. GITRL is also rapidly mobilized to the platelet surface following interaction with tumor cells, which results in platelet coating. Whereas GITRL, in the fashion of several other TNF family members, is capable of transducing reverse signals, no influence on platelet activation and function was observed upon GITRL triggering. However, platelet coating of tumor cells inhibited NK cell cytotoxicity and IFN-γ production that could partially be restored by blocking GITR on NK cells, thus indicating that platelet-derived GITRL mediates NK-inhibitory forward signaling via GITR. These data identify conferment of GITRL pseudoexpression to tumor cells by platelets as a mechanism by which platelets may alter tumor cell immunogenicity. Our data thus provide further evidence for the involvement of platelets in facilitating evasion of tumor cells from NK cell immune surveillance.  相似文献   
104.
Inter alpha inhibitor (IαI) is an abundant serum protein consisting of three polypeptides: two heavy chains (HC1 and HC2) and bikunin, a broad-specificity Kunitz-type proteinase inhibitor. The complex is covalently held together by chondroitin sulfate but during inflammation IαI may interact with TNF-stimulated gene 6 protein (TSG-6), which supports transesterification of heavy chains to hyaluronan. Recently, IαI was shown to inhibit mouse complement in vivo and to protect from complement-mediated lung injury but the mechanism of such activity was not elucidated. Using human serum depleted from IαI, we found that IαI is not an essential human complement inhibitor as was reported for mice and that such serum has unaltered hemolytic activity. However, purified human IαI inhibited classical, lectin and alternative complement pathways in vitro when added in excess to human serum. The inhibitory activity was dependent on heavy chains but not bikunin and detected at the level of initiating molecules (MBL, properdin) in the lectin/alternative pathways or C4b in the classical pathway. Furthermore, IαI affected formation and assembly of the C1 complex and prevented assembly of the classical pathway C3-convertase. Presence and putative interactions with TSG-6 did not affect the ability of IαI to inhibit complement thus implicating IαI as a potentially important complement inhibitor once enriched onto hyaluronan moieties in the course of local inflammatory processes. In support of this, we found a correlation between IαI/HC-containing proteins and hemolytic activity of synovial fluid from patients suffering from rheumatoid arthritis.  相似文献   
105.
The nucleosome is a major autoantigen in systemic lupus erythematosus (SLE); it can be detected as a circulating complex in the serum, and nucleosomes have been suggested to play a key role in disease development. In the present study, we show for the first time that physiological concentrations of purified nucleosomes trigger innate immunity. The nucleosomes are endocytosed and induce the direct activation of human neutrophils (polymorphonuclear leukocytes (PMN)) as revealed by CD11b/CD66b up-regulation, IL-8 secretion, and increased phagocytic activity. IL-8 is a neutrophil chemoattractant detected in high concentrations in the sera of patients, and IL-8 secretion might thus result in enhanced inflammation, as observed in lupus patients, via an amplification loop. Nucleosomes act as free complexes requiring no immune complex formation and independently of the presence of unmethylated CpG DNA motifs. Both normal and lupus neutrophils are sensitive to nucleosome-induced activation, and activation is not due to endotoxin or high-mobility group box 1 contamination. In mice, i.p. injection of purified nucleosomes induces neutrophil activation and recruitment in a TLR2/TLR4-independent manner. Importantly, neutrophils have been suggested to link innate and adaptive immunity. Thus, nucleosomes trigger a previously unknown pathway of innate immunity, which may partially explain why peripheral tolerance is broken in SLE patients.  相似文献   
106.
We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.  相似文献   
107.
Lacticin 3147 is a two-peptide lantibiotic produced by Lactococcus lactis in which both peptides, LtnA1 and LtnA2, interact synergistically to produce antibiotic activities in the nanomolar concentration range; the individual peptides possess marginal (LtnA1) or no activity (LtnA2). We analysed the molecular basis for the synergism and found the cell wall precursor lipid II to play a crucial role as a target molecule. Tryptophan fluorescence measurements identified LtnA1, which is structurally similar to the lantibiotic mersacidin, as the lipid II binding component. However, LtnA1 on its own was not able to substantially inhibit cell wall biosynthesis in vitro; for full inhibition, LtnA2 was necessary. Both peptides together caused rapid K(+) leakage from intact cells; in model membranes supplemented with lipid II, the formation of defined pores with a diameter of 0.6 nm was observed. We propose a mode of action model in which LtnA1 first interacts specifically with lipid II in the outer leaflet of the bacterial cytoplasmic membrane. The resulting lipid II:LtnA1 complex is then able to recruit LtnA2 which leads to a high-affinity, three-component complex and subsequently inhibition of cell wall biosynthesis combined with pore formation.  相似文献   
108.
Three endiandric acid derivatives, beilschmiedic acids A, B and C were isolated from the stem bark of Beilschmiedia anacardioides together with the known β-sitosterol. Their structures were established by means of modern spectroscopic techniques. The relative configuration of compound 1 was determined by single crystal X-ray analysis. The antibacterial activities of compounds A,B,C were evaluated in vitro against five strains of microbes. Compound C showed strong activity against Bacillus subtilis, Micrococcus luteus and Streptococcus faecalis (MICs below 23 μM). This Compound was more active than the reference antibiotic ampicillin against B. subtilis and M. luteus.  相似文献   
109.
110.
Objectives  Indoleamine-2,3-Dioxygenase (IDO) is an immunosuppressive molecule inducible in various cells. In addition to classic IDO (IDO1), a new variant, IDO2, has recently been described. When expressed in dendritic cells (DCs) or cancer cells, IDO was thought to suppress the immune response to tumors. A novel therapeutic approach in cancer envisages inhibition of IDO with 1-methyl-tryptophan (1MT). The levo-isoform (l-1MT) blocks IDO1, whereas dextro-1MT (d-1MT), which is used in clinical trials, inhibits IDO2. Here we analyze IDO2 expression in human cancer cells and the impact of both 1-MT isoforms on IDO activity. Methods  Surgically extirpated human primary tumors as well as human cancer cell lines were tested for IDO1 and IDO2 expression by RT-PCR. IDO1 activity of Hela cells was blocked by transfection with IDO1-specific siRNA and analysed for tryptophan degradation by RP-HPLC. The impact of d-1MT and l-1MT on IDO activity of Hela cells and protein isolates of human colon cancer were studied. Results  Human primary gastric, colon and renal cell carcinomas constitutively expressed both, IDO1 and IDO2 mRNA, whereas cancer cells lines had to be induced to by Interferon-gamma (IFN-γ). Treatment of Hela cells with IDO1-specific siRNA resulted in complete abrogation of tryptophan degradation. Only l-1MT, and not d-1MT, was able to block IDO activity in IFN-γ-treated Hela cells as well as in protein isolates of primary human colon cancer. Conclusions  Although IDO2 is expressed in human tumors, tryptophan degradation is entirely provided by IDO1. Importantly, d-1MT does not inhibit the IDO activity of malignant cells. If ongoing clinical studies show a therapeutic effect of d-1MT, this cannot be attributed to inhibition of IDO in tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号